吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1016-1023.doi: 10.13229/j.cnki.jdxbgxb201404018

• • 上一篇    下一篇

基于可穿戴传感系统的人体肢段定位动态评估

刘坤, 韩宣, 刘政   

  1. 吉林大学 机械科学与工程学院, 长春130022
  • 收稿日期:2013-05-30 出版日期:2014-07-01 发布日期:2014-07-01
  • 作者简介:刘坤(1981-), 男, 副教授, 博士.研究方向:下肢智能康复训练设备.E-mail:kunliu@jlu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金项目(81101138); 中国博士后科学基金项目(2011M500601); 长春市社会发展科技计划项目(2012111-12SF39)

Ambulatory assessment of human segmental orientation using accelerometers

LIU Kun, HAN Xuan, LIU Zheng   

  1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2013-05-30 Online:2014-07-01 Published:2014-07-01

摘要: 介绍了一种采用双传感器差分算法分析人体肢段双向偏转角并进行肢段定位的新方法;基于本方法开发了一套使用三轴加速度计的可穿戴式传感系统, 用于获取和分析下肢肢段前后摆角和左右偏转角信息。为了评估本方法, 将该系统分别在二自由度机械臂和受验志愿者大腿上进行了测试。结果表明:在理想条件下, 只使用加速度计组成可穿戴式传感系统, 通过测量髋关节和大腿上的加速度, 就可以得到人体局部坐标系内下肢段定向的动态分析。

关键词: 生物医学工程, 双传感器差分算法, 可穿戴传感器系统, 肢段定位

Abstract: A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was tested on a mechanical arm of two degrees of freedom and on the thighs of eight volunteer subjects. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.

Key words: biomedical engineering, double-sensor difference based algorithm, wearable sensor system, segmental orientation

中图分类号: 

  • TP212.9
[1] Findlow A, Goulermas J Y, Nester C, et al. Predicting lower limb joint kinematics using wearable motion sensors[J]. Gait & Posture, 2008, 28(1):120-126.
[2] Favre J, Jolles B M, Aissaoui R, et al. Ambulatory measurement of 3D knee joint angle[J]. Journal of Biomechanics, 2008, 41(5): 1029-1035.
[3] Aminian K, Trevisan C, Najafi B, et al. Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement[J]. Gait & Posture, 2004, 20 (1):102-107.
[4] Mayagoitiaa Ruth E, Neneb Anand V, Veltinkc Peter H. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems[J]. Journal of Biomechanics, 2002, 35(4):537-542.
[5] Turcot K, Aissaoui R, Boivin K, et al. New accelerometric method to discriminate between asymptomatic subjects and patients with medial knee osteoarthritis during 3-D gait[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(4): 1415-1422.
[6] Kavanagh J J, Menz H B. Accelerometry: a technique for quantify movement patterns during walking[J]. Gait & Posture, 2008, 28 (1):1-15.
[7] Nyan M N, Tay F E H, Seah K H W, et al. Classification of gait patterns in the time-frequency domain[J]. Journal of Biomechanics, 2006, 39(14):2647-2656.
[8] Liu Kun, Liu Tao, Shibata K, et al. Novel approach for lower limb segment orientation in gait analysis using triaxial accelerometers[C]∥IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2008:488-492.
[9] Williamson R, Andrews B J. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes[J]. Medical And Biological Engineering and Computing, 2001, 39(3):294-302.
[10] Mehmet Engin, Alparslan Demirel, Engin Zeki, et al. Recent developments and trends in biomedical sensors[J]. Measurement, 2005, 37:173-188.
[11] Roetenberg D, Slycke P J, Veltink P H. Ambulatory position and orientation tracking fusing magnetic and inertial sensing[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(3): 883-890.
[12] Kavanagh J J, Morrison S, James D A, et al. Reliability of segmental accelerations measured using a new wireless gait analysis system[J]. Journal of Biomechanics, 2006, 39(15): 2863-2872.
[13] Jolles Dejnabadi H, Casanova Brigitte M, Pascal Emilio Fua, et al. Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(7):1385-1392.
[14] Zijlstra Agnes, Goosen Jon H M, Verheyen Cees C P M, et al. A body-fixed-sensor based analysis of compensatory trunk movements during unconstrained walking[J]. Gait & Posture, 2008, 27(1):164-167.
[15] Luinge H J, Veltink P H. Measuring orientation of human body segments using miniature gyroscopes and accelerometers[J]. Medical and Biological Engineering and Computing, 2005, 43(2):273-282.
[16] Dejnabadi H, Jolles B M, Aminian K. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(8):1478-1484.
[17] O'Donovan Karol J, Kamnik Roman, O'Keeffe Derek T, et al. An inertial and magnetic sensor based technique for joint angle measurement[J]. Journal of Biomechanics, 2007, 40(12):2604-2611.
[18] Hagemeister Nicola, Parent Gerald, Van de Putte Maxime. A reproducible method for studying three-dimensional knee kinematics[J]. Journal of Biomechanics, 2005, 38 (9):1926-1931.
[19] Zatsiorsky V M. Kinematics of Human Motion[M].Champaign, LI:Human Kinetics, 2002.
[20] Rose Jessica, Gamble James G. Human Walking, 3rd ed[M]. New York: Lippincott Williams & Wilkins, 2006:111-114.
[1] 刘坤, 刘勇, 闫建超, 吉硕, 孙震源, 徐洪伟. 基于体外传感检测的人体站起动力学分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1140-1146.
[2] 刘坤, 叶明, 李超, 闫鹏飞, 刘晋侨. 臂式站起运动康复训练机械结构设计及分析[J]. 吉林大学学报(工学版), 2016, 46(5): 1532-1539.
[3] 刘坤,赵建琛,韩宣. 基于非侵入式虚拟传感方法的下肢关节运动学检测[J]. 吉林大学学报(工学版), 2015, 45(1): 145-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .