吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 645-652.doi: 10.13229/j.cnki.jdxbgxb201502046

• 论文 • 上一篇    下一篇

基于语义知识的监控执行模式

顾海军,崔启帆,马德华,孟凡勇,赵晓晖   

  1. 吉林大学 通信工程学院, 长春 130012
  • 收稿日期:2013-06-13 出版日期:2015-04-01 发布日期:2015-04-01
  • 作者简介:顾海军(1970),男,副教授.研究方向:智能信息处理,Web智能.E-mail:ghyciom@163.com
  • 基金资助:
    吉林省科技发展计划项目(20110356);吉林省自然科学基金项目(201215011).

Supervisory control model based on semantic knowledge

GU Hai-jun,CUI Qi-fan, MA De-hua, MENG Fan-yong, ZHAO Xiao-hui   

  1. College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2013-06-13 Online:2015-04-01 Published:2015-04-01

摘要: 为提高监控执行系统的智能性并实现操作模式从面向设备到面向用户的转变,提出基于语义知识的监控执行模型SKBSCM。该模型利用资源描述框架RDF描述数据,通过基于语义知识的规则推理,自动整合系统采集数据以及用户偏好信息,感知用户需求,并根据上下文生成系统解决方案。本文将SKBSCM模型应用于家居智能领域,一些日常生活的测试实验结果表明,该方法可大大改善用户的体验。

关键词: 计算机应用, 监控模型, 语义, 推理, 面向用户

Abstract: In order to improve the intelligence of the supervisory system, thus to transfer the supervisory control from device-oriented mode to custom-oriented mode, a monitor model, named Semantic Knowledge Based Supervisory Control Model (SKBSCM), is presented. In this model the Resource Description Framework (RDF) is used to describe data, and semantic knowledge based rules are employed for reasoning. The model automatically integrates the collected data and the user preferred information, perceives users' need, and takes the initiative to generate the most reasonable solution on the environment context. The proposed SKBSCM model is applied to the smart-home field. Experiments on some daily living activities show that the model greatly improves the users' experience feeling.

Key words: computer application, supervisory control model, semantic, reasoning, customer-oriented

中图分类号: 

  • TP391
[1] Hu H, Yang D, Fu L, et al. Semantic web-based
policy interaction detection method with rules in smart home for detecting interactions among user policies[J]. IET Communications, 2011, 5(17): 2451-2460.
[2] Parreiras F S. Semantic Web and Model-Driven Engineering[M]. Hoboken, NJ: John Wiley and Sons, 2012.
[3] Gruber T R. Toward principles for the design of ontologies used for knowledge sharing?[J]. International Journal of Human-Computer Studies,1995,43(5):907-928.
[4] Kim J H, Kwon H , Kim D H, et al . Building a service-oriented ontology for wireless sensor networks[C]∥Seventh IEEE/ACIS International Conference on Computer and Information Science. Portland: IEEE, 2008: 649-654.
[5] 吴强,刘宗田,强宇.基于本体的知识库推理研究[J].计算机应用研究,2005,22(1):50-52.
Wu Qiang, Liu Zong-tian, Qiang Yu. Analysis of knowledge bases reasoning based on ontology[J]. Application Research of Computers, 2005, 22(1): 50-52.
[6] 杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847.
Du Xiao-yong, Li Man, Wang Shan. A survey on ontology learning research[J]. Journal of Software,2006,17(9):1837-1847.
[7] Huang V, Javed M K. Semantic sensor information description and processing[C]∥The Second International Conference on Sensor Technologies and Applications. Cap Esterel: IEEE, 2008: 456-461.
[8] Eid M, Liscano R, El Saddik A. A universal ontology for sensor networks data[C]∥IEEE International Conference on Computational Intelligence for Measurement Systems and Applications. Ostuni: IEEE, 2007 : 59-62.
[9] Sun H B, Fan W H, Shen W M, et al. Ontology fusion in high-level-architecture-based collaborative engineering environments[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(1):2-13.
[10] Wei M J, Xu J L, Yun H Y, et al. Ontology-based home service model[J]. Computer Science and Information Systems, 2012, 9(2): 813-838.
[11] Kao Y W, Yuan S M. User-configurable semantic home automation[J].Computer Standards & Interfaces, 2012, 34(1): 171-188.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[7] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!