吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1360-1367.doi: 10.13229/j.cnki.jdxbgxb201604049

• 论文 • 上一篇    下一篇

考虑复杂金属设备的车辆发动机舱电磁环境效应分析

蔡金良, 孙晓颖, 赵晓晖   

  1. 吉林大学 通信工程学院,长春 130012
  • 收稿日期:2014-01-27 出版日期:2016-07-20 发布日期:2016-07-20
  • 通讯作者: 赵晓晖(1957-),男,教授,博士生导师.研究方向:信号处理理论,汽车电磁兼容.E-mail:xhzhao@jlu.edu.cn
  • 作者简介:蔡金良(1987-),女,博士研究生.研究方向:汽车电磁兼容.E-mail:caijl10@mails.jlu.edu.cn
  • 基金资助:
    装备预先研究项目(40407030202); 吉林大学国防预研基金项目(419140100013)

Electromagnetic environment effects for automotive engine block with complex metallic equipments

CAI Jin-liang, SUN Xiao-ying, ZHAO Xiao-hui   

  1. College of Communication and Engineering, Jilin University, Changchun 130012,China
  • Received:2014-01-27 Online:2016-07-20 Published:2016-07-20

摘要: 为了准确地分析高空核电磁脉冲作用下车辆发动机舱内的电磁环境,考虑了散热器、发动机和变速箱等不同形状、位于舱内不同位置的不规则金属设备的影响,计算了舱内500多个观测点的电场强度,并依据自参考方法验证了计算结果的准确性。最后从场强空间分布、场强峰值出现频率和谐振特性三方面分析了舱内的电磁环境。结果表明:舱内场强峰值符合瑞利分布;散热器使主谐振频率发生偏移,发动机使关键区域场强增大;金属设备显著影响舱内场强峰值的最大值,使其提高约一倍。

关键词: 电磁学, 电磁环境效应, 车辆发动机舱, 金属设备, 高空核电磁脉冲

Abstract: To precisely analyze the electromagnetic environment in automotive engine block radiated by High Electromagnetic Pulse (HEMP), the complex metallic equipments with different shapes at different positions, such as radiator, engine and gear-box were considered. The electric fields were computed at more than 500 points in the block, and the results were verified using self-reference method. Finally, the electromagnetic environment was analyzed from views of the electric field distribution, the frequency of occurrence of peak value and the electric field resonances. The results show that the electric peak values are Rayleigh distributed. The radiator leads the shift of the resonance frequency, and the engine results in the increase in electric field in important region. Metallic equipments evidently impact on the maximum electric field peak values in the block, which is doubled.

Key words: electromagnetics, electromagnetic environmental effects, automotive engine block, metallic equipments, high altitude electromagnetic pulse

中图分类号: 

  • O441.4
[1] Radasky W A. Introduction to the special issue on high-altitude electromagnetic pulse (EMP)[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 410-411.
[2] MIL-STD 464C. Electromagnetic environment requirements for systems[S].2010.
[3] Tanaka M. A study on the electric field distribution in an automobile body for an antenna system mounted inside the body[J]. IEEE Transactions on Electromagnetic Compatibility, 1988, 37(2): 114-119.
[4] Herring J L, Christopoulos C. The vehicle body as an electromagnetic shield-numerical simulation for emission and susceptibility studies[C]∥The Seventh International Conference on EMC,IEEE,New York,2009: 125-131.
[5] Paletta L, Parmantier J P, Issac F, et al. Susceptibility analysis of wiring in a complex system combining a 3-D solver and a transmission-line network simulation[J]. IEEE Transactions on Electromagnetic Compatibility, 2002, 44(2): 309-317.
[6] Ferrieres X, Parmantier J P, Bertuol S, et al. Application of a hybrid finite difference/finite volume method to solve an automotive EMC problem[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(4): 624-634.
[7] Chahine I, Bunlon X, Lafon F, et al. An original approach based on data exchange between car manufacturers and suppliers to estimate susceptibility threshold by numerical simulation at early design stage[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(2):342-352.
[8] Siah E S, Sertel K, Volakis J L, et al. Coupling studies and shielding techniques for electromagnetic penetration through apertures on complex cavities and vehicular platforms[J]. IEEE Transactions on Electromagnetic Compatibility, 2003, 45(2): 309-317.
[9] Tapigure S, Klingler M, Besnier P. Electromagnetic resonances in complex structures: case of a vehicle[C]∥International Zurich Symposium on Electromagnetic Compatibility,IEEE,Zurich,2009: 437-440.
[10] IEEE-STD 1597.1. IEEE standard for validation of computational electromagnetics computer modeling and simulations[S].2009.
[11] Akhtarzad S, Johns P B. The solution of Maxwell's Equations in three space dimensions and time by the TLM method of numerical analysis[J]. Proceedings of the Institution of Electric Engineers, 1975, 122(12): 1344-1348.
[12] Ruddle A R. Validation of simple estimates for average filed strengths in complex cavities against detailed results obtained from a 3D numerical model of a car[J]. IET Science, Measurement and Technology, 2008, 2(6): 455-466.
[1] 张友俊, 刘晓元. 基于信号干扰理论的差分带通滤波器[J]. 吉林大学学报(工学版), 2017, 47(3): 1003-1008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] 肖锐, 邓宗才, 兰明章, 申臣良. 不掺硅粉的活性粉末混凝土配合比试验[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .