吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 609-614.doi: 10.13229/j.cnki.jdxbgxb201702036

• • 上一篇    下一篇

基于果蝇优化的随机森林预测方法

赵东1, 2, 臧雪柏1, 赵宏伟1   

  1. 1.吉林大学 计算机科学与技术学院,长春 130022;
    2.长春师范大学 计算机科学与技术学院,长春 130032
  • 收稿日期:2016-01-12 出版日期:2017-03-20 发布日期:2017-03-20
  • 通讯作者: 臧雪柏(1963-),女,研究员,博士.研究方向:数据库与智能网络.E-mail:xbzang@yahoo.com.cn
  • 作者简介:赵东(1978-),男,副教授,博士研究生.研究方向:智能信息系统与嵌入式技术.E-mail:zd-hy@163.com
  • 基金资助:
    国家自然科学基金项目(61101155); 吉林省自然科学基金项目(20140101184JC); 长春市科技发展计划项目(2012091); 吉林省教育厅“十三五”科学技术研究项目(2016392).

Random forest prediction method based on optimization of fruit fly

ZHAO Dong1, 2, ZANG Xue-bai1, ZHAO Hong-wei1   

  1. 1.College of Computer Science and Technology, Jilin University,Changchun 130022,China;
    2.College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China
  • Received:2016-01-12 Online:2017-03-20 Published:2017-03-20

摘要: 提出了一种基于果蝇算法优化的随机森林预测方法,该方法使用果蝇优化算法对随机森林的两个主要参数进行优化,构建一种优化的随机森林模型,并与现有方法进行了对比和分析。实验结果表明,本文方法不仅具有更高的识别准确度,在时间上也具有较高效率,可作为问题预测的一种有效工具。

关键词: 计算机应用, 机器学习, 果蝇优化, 随机森林

Abstract: This paper presents a random forest prediction method based on optimization of fruit fly. This method uses fruit fly optimization algorithm to optimize the two main parameters of random forest; then, constructs a random forest optimization model. The proposed method and existing methods are compared and analyzed. Experimental results show that the proposed method not only has higher recognition accuracy, but also has high efficiency in time, and can be used as an effective tool for prediction problem.

Key words: computer application, machine learning, optimization of fruit fly, random forest

中图分类号: 

  • TP393
[1] Pan W T. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012,26(2):69-74.
[2] Li H, Guo S, Zhao H, et al. Annual electric load forecasting by a least squares support vector machine with a fruit fly optimization algorithm[J]. Energies, 2012, 5(12): 4430-4445.
[3] Chen P W, Lin W Y, Huang T H, et al. Using fruit fly optimization algorithm optimized grey model neural network to perform satisfaction analysis for e-business service[J]. Applied Mathematics & Information Sciences, 2013, 7(2): 459-465.
[4] Li H Z, Guo S, Li C J, et al. A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm[J]. Knowledge-Based Systems, 2013, 37(2): 378-387.
[5] Shan D, Cao G, Dong H. LGMS-FOA: an improved fruit fly optimization algorithm for solving optimization problems[J]. Mathematical Problems in Engineering, 2013, 12(6): 236-245.
[6] Wang L, Zheng X L, Wang S Y. A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem[J]. Knowledge-Based Systems, 2013, 48(2): 17-23.
[7] Pan W T. Mixed modified fruit fly optimization algorithm with general regression neural network to build oil and gold prices forecasting model[J]. Kybernetes, 2014, 43(7): 1053-1063.
[8] Pan Q K, Sang H Y, Duan J H, et al. An improved fruit fly optimization algorithm for continuous function optimization problems[J]. Knowledge-Based Systems, 2014, 62(5): 69-83.
[9] Yuan X, Dai X, Zhao J, et al. On a novel multi-swarm fruit fly optimization algorithm and its application[J]. Applied Mathematics and Computation, 2014, 23(3): 260-271.
[10] Li J Q, Pan Q K, Mao K, et al. Solving the steelmaking casting problem using an effective fruit fly optimisation algorithm[J]. Knowledge-Based Systems, 2014,72(5): 28-36.
[11] Zheng X L, Wang L, Wang S Y. A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem[J]. Knowledge-Based Systems, 2013, 57(2): 95-103.
[12] Wang L, Shi Y, Liu S. An improved fruit fly optimization algorithm and its application to joint replenishment problems[J]. Expert Systems with Applications,2015,42(9): 4310-4323.
[13] Wang W, Liu X. Melt index prediction by least squares support vector machines with an adaptive mutation fruit fly optimization algorithm[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 141: 79-87.
[14] Xiao C, Hao K, Ding Y. An improved fruit fly optimization algorithm inspired from cell communication mechanism[J]. Mathematical Problems in Engineering, 2015, 2015:1-15.
[15] 姚登举, 杨静, 詹晓娟. 基于随机森林的特征选择算法[J]. 吉林大学学报:工学版, 2014,44(1):137-141.
Yao Deng-ju,Yang Jing,Zhan Xiao-juan.Feature selection algorithm based on random forest[J].Journal of Jilin University (Engineering and Technology Edition), 2014,44(1):137-141.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!