吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1451-1458.doi: 10.13229/j.cnki.jdxbgxb20180354

• • 上一篇    

混合动力汽车电池性能影响因素分析与试验

范光辉1,2(),余剑武1,2(),罗红2,李鑫2,张亚飞1   

  1. 1. 湖南大学 汽车车身先进设计制造国家重点试验室,长沙 410082
    2. 湖南大学 机械与运载工程学院,长沙 410082
  • 收稿日期:2018-04-16 出版日期:2019-09-01 发布日期:2019-09-11
  • 通讯作者: 余剑武 E-mail:79022719@qq.com;yokenbu@yahoo.com
  • 作者简介:范光辉(1988-),男,博士研究生.研究方向:流动传热数值计算与应用,多物理场耦合理论及应用.E-mail:79022719@qq.com
  • 基金资助:
    国家自然科学基金项目(51575174)

Influencing factors analysis and experimental study of battery performances in hybrid electric vehicle

Guang-hui FAN1,2(),Jian-wu YU1,2(),Hong LUO2,Xin LI2,Ya-fei ZHANG1   

  1. 1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
    2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
  • Received:2018-04-16 Online:2019-09-01 Published:2019-09-11
  • Contact: Jian-wu YU E-mail:79022719@qq.com;yokenbu@yahoo.com

摘要:

以某混合动力电动汽车软包锂电池为对象,试验研究了温度和荷电状态(SOC)对电池容量、直流内阻、开路电压的影响规律,分析了电池使用寿命的影响因素。对大批量锂电池性能参数进行数理统计分析,研究了电池性能参数的一致性和相关性。研究结果表明:温度过高过低都会引起电池内阻增大和电池容量下降,从而降低电池寿命。SOC过高、过低同样会引起电池内阻增大,开路电压剧烈变化,不仅降低电池寿命还会削弱电池使用效率。批量电池性能参数存在一定相关性,其一致性受电池数量的影响较大。电池数量、使用温度和SOC使用范围的优化不仅可改善汽车动力性能,还能显著提高混合动力电动汽车使用寿命。

关键词: 车辆工程, 电池容量, 直流内阻, 开路电压, 电池寿命

Abstract:

Taking a lithium pouch battery of a hybrid electric vehicle as the research object, the influences of temperature and State of Charge (SOC) on battery capacity, DC internal resistance and open-circuit voltage were experimentally studied. Also the factors influencing the battery life were analyzed. The performance parameters of a large number of lithium batteries were statistically tested, the consistency and correlation of the battery performance parameters were investigated. Experimental results show that over high or over low temperature could lead to an increase in battery resistance and a decrease in battery capacity, which reduces battery life. Excessively low SOC can also cause the increase of internal resistance of the battery and the drastic change of open-circuit voltage, which not only reduces the battery life, but also weakens the efficiency of the battery. There is a certain correlation between the performance parameters of the batch battery, and its consistency is greatly influenced by the number of batteries. The optimization of the number of batteries, the use of temperature and the SOC not only improves the dynamic performance, but also significantly improves the service life of the hybrid electric vehicle.

Key words: vehicle engineering, battery capacity, direct current resistance, open circuit voltage, battery life

中图分类号: 

  • U469.72

图1

ARC测试原理图"

图2

ARC绝热测试设备"

图3

温度测试仪以及测试现场"

图4

动力电池充放电测试设备"

图5

电池单体"

表1

电池性能参数"

项 目标 准
标称容量/(A·h)32
容量范围/(A·h)31~33
标称电压/V2.2
交流内阻/mΩ≤1
充电截止电压/V2.8±0.05
充电截止电流/A0.01
放电截至电压/V2.5
循环寿命/次8000
最大持续放电电流/A9
5 s脉冲放电电流/A320
充电工作温度/℃0~55
放电工作温度/℃-20~60
储存温度/℃-20~45
电池重量/g860±20

表2

电池测试环境温度工况设计"

工况序号环境温度/℃放电倍率/C
1-201
201
3251
4451

表3

电池参数变量定义"

随机变量电池参数相关系数相关性
xi电池容量Cxyxiyi相关性
yi直流内阻Cxzxizi相关性
zi开路电压Cyzyizi相关性

图6

电池参数测试数据"

图7

不同SOC、不同温度下电池直流内阻变化曲线"

图8

电池参数标准误差"

表4

电池参数"

参 数电池容量/(mA·h)直流内阻/mΩ开路电压/mV
均值323520.4562229
标准差210.80.041 41.309
标准误差/%0.659.080.59

图9

电池参数的相关性曲线"

1 张向文, 高冠. 电动汽车动力电池绝缘电阻实时在线监测系统[J]. 吉林大学学报: 工学版, 2017, 47(5): 1395-1402.
ZhangXiang-wen, GaoGuan. Real-time on-line monitoring system for power battery insulation resistance of electric vehicle[J]. Journal of Jilin University (Engineering and Technical Edition), 2017, 47(5): 1395-1402.
2 TroxlerY, WuB, MarinescuM, et al. The effect of thermal gradients on the performance of lithiumion batteries[J]. Journal of Power Sources, 2014, 247: 1018-1025.
3 罗玉涛, 何小颤. 动力锂离子电池热安全性影响因素的研究[J]. 汽车工程, 2012, 34(4): 333-338.
LuoYu-tao, HeXiao-chan. A research on the affecting factors of thermal safety in lithium-ion power battery[J]. Automotive Engineering, 2012, 34(4): 333-338.
4 张志杰, 李茂德. 锂离子电池内阻变化对电池温升影响分析[J]. 电源技术, 2010, 34(2): 128-130.
ZhangZhi-jie, LiMao-de. Effect of internal resistance on temperature rising of lithium-ion battery[J]. Chinese Journal of Power Sources, 2010, 34(2): 128-130.
5 余剑武, 范光辉, 雷吉平, 等. 动力电池组汇流排过载能力及电流均衡性影响因素研究[J]. 中国机械工程,2017, 28(20): 2426-2433.
YuJian-wu, FanGuang-hui, LeiJi-ping, et al. Research on overloading capacity of bus bars in battery module and influence factors of current balance[J]. China Mechanical Engineering, 2017, 28(20): 2426-2433.
6 LinChun-jing, XuSi-chuan, LiZhao. Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles[J]. Journal of Power Sources, 2015, 294: 633-642.
7 何耀, 刘兴涛, 张陈斌, 等. 基于动力电池组内阻模型的绝缘检测算法[J]. 吉林大学学报: 工学版, 2013, 43(5): 1165-1170.
HeYao, LiuXing-tao, ZhangChen-bin, et al. Insulation detection algorithm for high power power battery system based on internal resistance model[J].Journal of Jilin University (Engineering and Technical Edition), 2013, 43(5): 1165-1170.
8 PendergastD R, DemauroE P, FletcherM, et a1. A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources,2011, 196(2): 793-800.
9 郭宏榆, 姜久春, 王吉松, 等. 功率型锂离子动力电池的内阻特性[J]. 北京交通大学学报, 2011, 35(5): 119-123.
GuoHong-yu, JiangJiu-chun, WangJi-song, et a1. Characteristic on internal resistance of lithiumion power battery[J]. Journal of Beijing Jiaotong University,2011, 35(5): 119-123.
10 SauvéP J B, TounsiP, ScheidE, et al. 3D electro thermal investigations for reliability of ultra-low on state resistance power mosfet[J]. Microelectronics’ Reliability, 2008, 48(8/9): 1464-1467.
11 李哲, 韩雪冰, 卢兰光, 等. 动力型磷酸铁锂电池的温度特性[J]. 机械工程学报, 2011, 47(18): 115-120.
LiZhe, HanXue-bing, LuLan-guang, et al. Temperature characteristics of power LiFePO4 batteries[J]. Journal of Mechanical Engineering, 2011, 47(18): 115-120.
12 秦大同, 林毓培, 胡建军, 等. 基于无级变速器速比控制的插电式混合动力汽车再生制动控制策略[J]. 吉林大学学报: 工学版, 2018, 48(2): 380-386.
QinDa-tong, LinYu-pei, HuJian-jun, et al. Regenerative braking control strategy of plug-in hybrid electric vehicle based on speed ratio control continuously variable transmission[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 380-386.
13 HeF, WangH, MaL. Experimental demonstration of active thermal control of a battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2015, 91(12): 630-639.
14 宋传学, 周放, 肖峰. 基于动态规划的复合电源能量管理优化[J]. 吉林大学学报: 工学版, 2017, 47(1): 8-14.
SongChuan-xue, ZhouFang, XiaoFeng. Energy management optimization of hybrid storage system (HESS) based on dynamic programming[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(1): 8-14.
15 DuanX, NatererG F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat Mass Transfer, 2010, 53: 5176-5182.
16 DubarryM, VuillaumeN, LiawB Y. Origins and accommodation of cell variations in Li-ion battery pack modeling[J].International Journal of Energy Research, 2010, 34: 216-231.
17 王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7): 17-20.
WangZhen-po, SunFeng-chun, LinCheng. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7): 17-20.
18 戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程, 2014, 36(2): 181-188.
DaiHai-feng, WangNan, WeiXue-zhe, et al. A research review on the cell inconsistency of Li-ion traction batteries in electric vehicles[J]. Automotive Engineering, 2014, 36(2): 181-188.
19 BandhauerT M, GarimellaS, FullerT F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2011, 158(3): 1-25.
20 SvetnikV, WangT, TongC, et al. Boosting: an ensemble learning tool for compound classification and QSAR modeling[J]. Journal of Chemical Information & Modeling, 2005, 45(3): 786-799.
21 VetterJ, NovákP, WagnerM R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1): 269-281.
22 杨彦涛, 张研, 范光辉. 电池性能参数相关性及发热特性[J]. 电池, 2018, 48(3): 191-194.
YangYan-tao, ZhangYan, FanGuang-hui. Correlation of battery performance parameters and thermal characteristics[J]. Battery Bimonthly, 2018, 48(3): 191-194.
23 范光辉, 余剑武 ,罗红, 等. 汇流排对电池模组温度与电流均衡性的影响分析和实验研究[J]. 汽车工程, 2019, 41(2): 140-146.
FanGuang-hui, YuJian-wu, LuoHong,et al. Analysis and experimental study on the influence of bus-bar on the temperature and current equalization of battery module[J]. Automotive Engineering, 2019, 41(2): 140-146.
[1] 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391.
[2] 高振海,孙天骏,何磊. 汽车纵向自动驾驶的因果推理型决策[J]. 吉林大学学报(工学版), 2019, 49(5): 1392-1404.
[3] 张博,张建伟,郭孔辉,丁海涛,褚洪庆. 路感模拟用永磁同步电机电流控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1405-1413.
[4] 王鹏宇,赵世杰,马天飞,熊晓勇,程馨. 基于联合概率数据关联的车用多传感器目标跟踪融合算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1420-1427.
[5] 胡兴军,惠政,郭鹏,张扬辉,张靖龙,王靖宇,刘飞. 基于流固耦合的汽车气动特性[J]. 吉林大学学报(工学版), 2019, 49(5): 1414-1419.
[6] 韩小健,赵伟强,陈立军,郑宏宇,刘阳,宗长富. 基于区域采样随机树的客车局部路径规划算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1428-1440.
[7] 鄢挺,杨林,陈亮. AMT换挡执行机构自适应智能控制策略[J]. 吉林大学学报(工学版), 2019, 49(5): 1441-1450.
[8] 李静,石求军,刘鹏,户亚威. 基于纵向车速估算的商用车ABS神经网络滑模控制[J]. 吉林大学学报(工学版), 2019, 49(4): 1017-1025.
[9] 杨顺,蒋渊德,吴坚,刘海贞. 基于多类型传感数据的自动驾驶深度强化学习方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1026-1033.
[10] 陈鑫,李铭,阮新建,王宁,王佳宁. 基于浸入单元法和延迟分离涡模型的Ahmed车模尾流涡旋结构[J]. 吉林大学学报(工学版), 2019, 49(4): 1034-1042.
[11] 周华,杨志刚,朱晖. 基于整车风洞试验的MIRA车型数值计算[J]. 吉林大学学报(工学版), 2019, 49(4): 1043-1053.
[12] 陈吉清,刘蒙蒙,兰凤崇. 三元动力电池及其成组后的过充安全性试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1072-1080.
[13] 柳润东,毛军,郗艳红,张宏宇,彭飞. 横风下高速列车会车压力波对风障的气动冲击[J]. 吉林大学学报(工学版), 2019, 49(4): 1054-1062.
[14] 秦国锋,那景新,慕文龙,谭伟,栾建泽,申浩. 高温老化对CFRP/铝合金粘接接头失效的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1063-1071.
[15] 张立斌,吴岛,单洪颖,邓祥敬. 基于制动试验台架的多轴车轴荷自调系统设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1081-1091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!