1 | He S N , Chan S H G . Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons[J]. IEEE Communications Surveys & Tutorials. 2016, 18(1): 466-490. | 2 | Dwiyasa F , Lim M H , Ong Y S , et al . Extreme learning machine for indoor location fingerprinting[J]. Multidimensional Systems and Signal Processing, 2017, 28(3): 867-883. | 3 | Niculescu D , Nath B . Ad Hoc positioning system(APS) using AOA[C]∥IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies, San Francisco, CA, USA, 2003: 2926-2931. | 4 | Alavi B , Pahlavan K . Modeling of the TOA-based distance measurement error using UWB indoor radio measurements[J]. IEEE Communications Letters, 2006, 10(4): 275-277. | 5 | Ma W K , Vo B N , Singh S S , et al . Tracking an unknown time-varying number of speakers using TDOA measurements: a random finite set approach[J]. IEEE Transactions on Signal Processing, 2006, 54(9): 3291-3304. | 6 | Tian Xiao-hua , Shen Ruo-fei , Liu Duo-wen , et al . Performance analysis of RSS fingerprinting based indoor localization[J]. IEEE Transactions on Mobile Computing, 2017, 16(10): 2847-2861. | 7 | Bahl P , Padmanabhan V N . RADAR: an in-building RF-based user location and tracking system[J/OL].[2018-09-20]. https:∥. | 8 | Youssef M , Agrawala A . The horus WLAN location determination system[C]∥3rd International Conference on Mobile Systems, Applications, and Services, Seattle, Washington, 2005: 205-218. | 9 | Matic A , Papliatseyeu A , Osmani V , et al . Tuning to your position: FM radio based indoor localization with spontaneous recalibration[C]∥2010 IEEE International Conference on Pervasive Computing and Communications, Mannheim, Germany, 2010: 153-161. | 10 | Ishida S , Izumi K , Tagashira S , et al . WiFi AP-RSS monitoring using sensor nodes toward anchor-free sensor localization[C]∥2015 IEEE 82nd Vehicular Technology Conference, Boston, MA, USA, 2015: 1-5. | 11 | Chen Qiu-xia , Ding Dong-dong , Zheng Yue . Indoor pedestrian tracking with sparse RSS fingerprints[J]. Tsinghua Science and Technology, 2018, 23(1): 95-103. | 12 | Chen F , Au W S A , Tan Z H , et al . Received-sigal-strength-based indoor positioning using compressive sensing[J]. IEEE Transactions on Mobile Computing, 2012, 11(12): 1983-1993. | 13 | Brownell P , Farley R D .Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus Mesaensis [J]. Journal of Comparative Physiology A, 1979, 131(1): 23-30. | 14 | Brownell P H , van Hemmen J L . Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions[J]. Integrative and Comparative Biology, 2001, 41(5): 1229-1240. | 15 | 王柯,刘富,康冰,等 .基于沙蝎定位猎物的仿生震源定位方法[J].吉林大学学报:工学版, 2018, 48(2): 633-639. | 15 | Wang Ke , Liu Fu , Kang Bing , et al . Bionic hypocenter localization method inspired by sand scorpion in locating preys[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(2): 633-639. | 16 | Stürzl W , Kempter R , van Hemmen J L . Theory of arachnid prey localization[J]. The American Physical Society, 2000, 84(24): 5668-5671. | 17 | Kim D E . Neural network mechanism for the orientation behavior of sand scorpions towards prey[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 1070-1076. | 18 | Seydnejad S R . Reconstruction of the input signal of the leaky integrate-and-fire neuronal model from its interspike intervals[J]. Biological Cybernetics, 2016, 110(1): 3-15. |
|