吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 333-341.doi: 10.13229/j.cnki.jdxbgxb20190199

• 通信与控制工程 • 上一篇    

5G移动通信中基于同频干扰分布的协同分布式天线传输系统

王金鹏1,2(),叶政鹏1,曹帆1,邹念育1   

  1. 1. 大连工业大学 信息科学与工程学院,辽宁 大连 116034
    2. 西澳大利亚大学 电气电子与工程学院,珀斯 WA6009,澳大利亚
  • 收稿日期:2019-02-23 出版日期:2020-01-01 发布日期:2020-02-06
  • 作者简介:王金鹏(1979?),男,副教授,博士.研究方向:无线通信. E?mail: wangjp@dlpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61402069);辽宁省自然科学基金项目(20170540059);辽宁省教育厅一般项目(2016J205);辽宁省普通高等教育本科教学改革立项项目(UPRP20140139)

Cooperative distributed antenna transmission method based on co-channel interference in 5G mobile communication system

Jin-peng WANG1,2(),Zheng-peng YE1,Fan CAO1,Nian-yu ZOU1   

  1. 1. Schoolo of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
    2. School of Electronic and Computer Engineering, University of Western Australia, Perth WA 6009, Australia
  • Received:2019-02-23 Online:2020-01-01 Published:2020-02-06

摘要:

针对协同分布式的天线传输(CDAT)技术在使用频分多址(FDMA)时,不可避免地造成干扰的过载,致使发射信号峰均比(Peak-to-average signal power ratio, PAPR)增加的问题,从理论上提出了一种多载波系统中下行链路的结合MMSE和空间分集联合接收方法。首先,在相邻宏单元共道干扰的情况下,描述了用于空间分集的空时分组编码传输分集(STBC-TD),以及用于多用户空间复用的最小均方误差滤波和奇异值分解(MMSE-SVD)。然后,为了抑制CDAT作用下PAPR的增大,由同频干扰(CCI)分布着手,引入了不需要无线终端信息传输的盲选择映射(Blind SLM),同时给出了STBC、CCI、SINR及BER的详细数学表达。蒙特-卡洛的仿真结果表明:在相同误码率BER条件下,相比于传统方式,本文算法对系统的信噪比性能可以提高1 dB左右。该方案在充分考虑了同频干扰CCI后,CDAT算法可以更为有效地提高系统容量,其也为研究无线蜂窝多接入系统下行链路的性能提供了一种新的思路。

关键词: 通信技术, 同频干扰, 互扰, 分集, 信号峰均比

Abstract:

In order to study the performance of downlink in 5G wireless cellular system, Cooperative Distributed Antenna Transmission (CDAT) is a feasible scheme. When using Frequency Division Multiple Access (FDMA), the CDAT technology inevitably causes interference overload, resulting in the increase in Peak-to-Average Signal Power Ratio (PAPR) of transmitted signals, which will lead to a certain decline in channel quality. To solve this problem, this paper theoretically proposes a joint downlink Minimum Mean Square Error (MMSE) and spatial diversity receiving method in multi-carrier systems. In the case of adjacent macro-cell co-channel interference, Space-Time Block Coded Transmit Diversity (STBC-TD) for spatial diversity, MMSE filtering and MMSE-SVD for multiuser spatial multiplexing are described. In order to restrain PAPR growth under CDAT, Blind-Selected Mapping (SLM) is introduced based on co-channel interference distribution. The detailed mathematical expressions of STBC, Co-Channel Interference (CCI), Signal-to-Interference Noise Ratio (SINR) and Bit Error Ratio (BER) are given. Finally, Monte Carlo computer simulation results show that, under the same BER condition, the SNR performance of the system can be improved by about 1dB. Therefore, the CDAT way with full consideration of CCI can improve the system capacity more effectively. It also provides a new way for studying the downlink performance of wireless cellular multi-access system.

Key words: communication technology, co-channel interference (CCI), inter-cellular interference(ICI), diversity, peak-to-average signal power ratio (PAPR)

中图分类号: 

  • TN929.52

图1

分布式天线小区网络的概念结构"

图2

下行链路CDAT的简化发射机/接收机结构"

表1

STBC参数"

N t N r J Q Coding rate
1 任意值 1 1 1
2 2 2 1
3 3 4 3/4
4 3 4 3/4
5 10 15 2/3
6 20 30 2/3

图3

单载波上行链路传输的STBC?TD"

图4

盲FD?SLM"

表2

仿真条件设定"

发送端和接收端 单载波上行链路 频分复用 STBC?TDw/R x?FDE
多用户空间复用 MMSE?SVD

正交频分复用OFDM

下行链路

频分复用 STBC?TDw/T x?FDE
多用户空间复用 MMSE?SVD
子载波数量 N c 128
用户接口GI的长度 N g 32
单一宏蜂窝中采用的分布式天线数量 N m a c r o 7
用户终端UE的天线数 N u e 2
移动基站终端的分布式天线数 N m b s 4
信道状态信息 Ideal
无线传播信道 路径损耗指数 α 3.5
遮挡衰减系数 σ / d B 7.0 ?
信道衰落模型 Frequency?selective block Nakagami?Rice and Rayleigh
Nakagami莱斯信道的系数 K / d B 10 ?
功率延迟模式的指数 L 16 - u n i f o r m

图5

MMSE?SVD与BD?SVD的比较"

图6

带STBC?TD的上行SC信号的PAPR"

图7

带STBC?TD和盲SLM的SC信号传输的误码率性能"

1 Sheng B O , Eben L I , Renjie L I , et al . Stabilizing periodic control of automated vehicle platoon with minimized fuel consumption[J]. IEEE Transactions on Transportation Electrification,2017,3(1): 259-271.
2 Tian Peigen , Xiao Xi , Wang Kui , et al . A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation[J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2230-2241.
3 Saleh A , Rustako A , Roman R . Distributed antennas for indoor radio communications [J]. IEEE Trans Commun, 1987, 35(12): 1245-1251.
4 Berggren F , Slimane S B . A simple bound on the outage probability with lognormally distributed interferers[J]. IEEE Commun Lett, 2004, 8(5): 271-273.
5 Dai L , Zhou S , Yao Y . Capacity analysis in CDMA distributed antenna systems[J]. IEEE Trans Wireless Commun, 2006, 4(6):2613-2620.
6 Katranaras E , Imran M A , Tzaras C . Uplink capacity of a variable density cellular system with multicell processing[J] IEEE Trans Commun, 2009,57(7):2098-2108.
7 邹奇峰,谭学治,刘梅,等 . 基于最小均方误差的单载波系统低复杂度频域迭代均衡[J]. 吉林大学学报:工学版, 2015, 45 (6): 2062-2068.
Zou Qi-feng , Tan Xue-zhi , Liu Mei , et al . Low complexity frequency domain iterative equalization based on minimum mean square error for single carrier systems[J]. Journal of Jilin University (Technology and Engineering Edition), 2015, 45 (6): 2062-2068.
8 Choi Wan, Andrews J G . Theoretical Limits of Cellular Systems with Distributed Antennas[M]. Auerbach: CRC Press, 2007.
9 邱昕, 沙学军, 梅林 . 基于加权分数傅立叶变换的混合载波码分多址多天线系统[J]. 吉林大学学报:工学版, 2013, 43(1): 218-222.
Qiu Xin , Sha Xue-jun , Mei Lin . Hybrid carrier CDMA multi-antenna system based on weighted-type fractional Fourier transform[J]. Journal of Jilin University (Technology and Engineering Edition), 2013, 43(1): 218-222.
10 Levy N , Shamai S . Information theoretic aspects of users’ activity in a Wyner-Like cellular model[J] IEEE Trans Inf Theory, 2008,56(5):2241-2248.
11 You X H , Wang D M , Sheng B ,et al . Cooperative distributed antenna systems for mobile communications[J]. IEEE Wireless Commun, 2010, 17 (3):35-43.
12 Chatzinotas S , Imran M A , Hoshyar R . On the multicell processing capacity of the cellular MIMO uplink channel in correlated Rayleigh fading environment[J]. IEEE Trans Wireless Commun, 2009, 8(7):3704-3715.
13 Fraidenraich G , Lvque O , Cioffi J M . On the MIMO channel capacity for the Nakagami-channel[J]. IEEE Trans Inf Theory, 2008,54(8):3752-3757.
14 赵晓晖, 沙京祺 . 基于DF中继的认知OFDM协作系统的资源分配算法[J]. 吉林大学学报:工学版, 2014, 44(5): 1481-1487.
Zhao Xiao-hui , Sha Jing-qi . Resource allocation algorithm in DF relay assisted OFDM cognitive radio systems[J]. Journal of Jilin University (Technology and Engineering Edition), 2014, 44(5): 1481-1487.
15 Kaltakis D , Katranaras E , Imran M A , et al . Information theoretic capacity of Gaussian cellular multiple-acess MIMO fading channel[J]. IET Commun, 2009, 3(7):1201-1207.
16 Wyner A D . Shannon-theoretic approach to a Gaussian cellular multiple-access channel[J]. IEEE Trans Inf Theory, 1994, 40: 1713- 1727.
17 刘毅, 陈晓鹏, 张继光, 等 . 协作网络中基于中继选择的协作波束赋形算法 [J]. 吉林大学学报:工学版, 2011, 41(5): 1480-1484.
Liu Yi , Chen Xiao-peng , Zhang Ji-guang , et al . Cooperative beamforming based on selection for relay networks[J]. Journal of Jilin University (Technology and Engineering Edition), 2011, 41(5): 1480-1484.
18 Gradshteyn I , Ryzhik I . Table of Integrals, Series, and Products[M]. London: Academic Press, 2003.
19 赵大伟, 赵洪林, 马永奎, 等 . 自适应解码转发系统的增强型比例选择合并器 [J]. 吉林大学学报:工学版, 2016, 46(2): 671-677.
Zhao Da-wei , Zhao Hong-lin , Ma Yong-kui , et al . Enhanced scaled selection combiner for decode-and-forward systems with adaptive modulation[J]. Journal of Jilin University (Technology and Engineering Edition), 2016, 46 (2): 671-677.
[1] 李翠然,于永生,谢健骊. 基于次用户优先级的频谱共享动态博弈算法[J]. 吉林大学学报(工学版), 2020, 50(1): 315-323.
[2] 刘毅,肖玲玲,王改静,张武军. 基于联合优化的D2D资源分配算法[J]. 吉林大学学报(工学版), 2020, 50(1): 306-314.
[3] 李文军,华强,谭立东,孙悦. DV⁃HOP和接收信号强度指示结合的改进算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1689-1695.
[4] 王洪雁,房云飞,朱圣棋,裴炳南. 非均匀噪声条件下考虑互耦效应的DOA估计方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1706-1714.
[5] 刘勇,邓方顺,刘小林,闵思婕,王鹏. 基于双混沌振子的最小频移键控信号频率估计方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1357-1362.
[6] 王宏志,姜方达,周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368.
[7] 周彦果,张海林,陈瑞瑞,周韬. 协作网络中采用双层博弈的资源分配方案[J]. 吉林大学学报(工学版), 2018, 48(6): 1879-1886.
[8] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[9] 董颖, 崔梦瑶, 吴昊, 王雨后. 基于能量预测的分簇可充电无线传感器网络充电调度[J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[10] 丁宁, 常玉春, 赵健博, 王超, 杨小天. 基于USB 3.0的高速CMOS图像传感器数据采集系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[11] 牟宗磊, 宋萍, 翟亚宇, 陈晓笑. 分布式测试系统同步触发脉冲传输时延的高精度测量方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[12] 陈瑞瑞, 张海林. 三维毫米波通信系统的性能分析[J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[13] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[14] 张超逸, 李金海, 阎跃鹏. 双门限唐检测改进算法[J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[15] 孙晓颖, 王震, 杨锦鹏, 扈泽正, 陈建. 基于贝叶斯网络的电子节气门电磁敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!