吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 379-385.doi: 10.13229/j.cnki.jdxbgxb20191098

• 通信与控制工程 • 上一篇    

基于半张量积压缩感知的粮情信息采集

金心宇(),谢慕寒,孙斌   

  1. 浙江大学 信息与电子工程学院,杭州 310027
  • 收稿日期:2019-12-02 出版日期:2021-01-01 发布日期:2021-01-20
  • 作者简介:金心宇(1958-),男,教授,博士生导师.研究方向:网络通信,信息处理.E-mail:jinxy@zju.edu.cn
  • 基金资助:
    浙江省科技计划项目(LGG18F010004)

Grain information compressed sensing based on semi-tensor product approach

Xin-yu JIN(),Mu-han XIE, SUN-Bin   

  1. College of Information Science & Electronic Engineering,Zhejiang University,Hangzhou 310027,China
  • Received:2019-12-02 Online:2021-01-01 Published:2021-01-20

摘要:

针对粮库中现有粮情信息在线监控中存在的数据规模庞大、数据传输及存储压力大等问题,提出了一种基于半张量积的粮情信息压缩采集方法。该方法利用半张量积压缩感知模型可以进行分组重构的方式,采用基于L1范数的迭代重加权重构方法,通过对整个粮仓温度信息进行整体压缩采样,在接收端进行迭代重加权分组重构,既保证了重构的精度,也提升了重构的速度。与已有报道的基于OMP算法等的压缩感知粮情温度采集信息处理进行了对比,实验结果表明,本文方法在保证重构精度的前提下,可明显提升重构的实时性,实现了对粮情信息的高精度实时重构。

关键词: 信号与信息处理, 压缩感知, 半张量积, 迭代重加权, 粮情信息

Abstract:

In the conventional sampling ways, the cost in data transmission and storage is very high. To reduce the transmission and storage cost of the temperature, a novel compressed sensing system based on semi-tensor product (STP) is proposed. First, a low-dimensional random matrix is generated to globally sample the original data. Then a grouping reconstruction method is proposed to obtain the solution with the iteratively re-weighted least-square (IRLS) algorithm. Numerical results show that the proposed system outperforms conventional way in speed of reconstruction and its comparable quality of reconstruction, which is important for real-time applications.

Key words: signal and information processing, compressed sensing, semi-tensor product, iteratively re-weighted least squares, grain information

中图分类号: 

  • TS120

图1

粮情信息采集系统框架"

图2

仓房温度数据重构效果"

图3

仓房温度系数DCT变换稀疏性比较"

表1

粮库温度数据重构性能比较"

仓房m/n本文方法文献[3]方法
均方误差重构时间/s均方误差重构时间/s
10.50.17670.31200.23350.9360
0.3750.27490.24960.52760.3120
0.250.35430.18720.76610.2496
20.50.08910.49920.17121.0608
0.3750.16300.26520.28910.3744
0.250.28780.18720.44240.1872
30.50.04100.45240.15260.9984
0.3750.17530.32760.28600.3900
0.250.29330.24960.42260.2028
40.50.07000.45240.18421.0764
0.3750.17130.32760.33020.3120
0.250.30050.18720.59000.2652
50.50.09340.39000.10420.9204
0.3750.16760.26520.37330.3900
0.250.26720.18720.50620.2028
60.50.04710.39000.11120.9984
0.3750.17770.31200.27670.3744
0.250.36910.24960.59120.2028
70.50.06600.37440.10651.0608
0.3750.13350.24960.30930.4212
0.250.27780.18720.50380.1404
80.50.05010.39000.11171.0296
0.3750.17720.31200.27670.3900
0.250.24050.24960.64710.2652
90.50.07780.45240.13110.9360
0.3750.17400.24960.51140.3120
0.250.35070.24960.60080.1872
100.50.05490.31200.18391.0140
0.3750.13350.31200.29490.3900
0.250.40670.18720.51360.3276
110.50.05540.37440.11251.0140
0.3750.16300.24960.49060.4524
0.250.33910.18720.51270.2028
120.50.05720.39000.10350.9516
0.3750.15820.32760.29030.3120
0.250.30440.24960.46980.2652
130.50.04830.31200.10101.1388
0.3750.12090.30000.21750.4524
0.250.35240.24960.52700.2496
1 Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
2 Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
3 傅洪亮, 陶华伟, 张贝贝. 基于压缩感知的储粮温度信息处理[J]. 河南工业大学学报:自然科学版, 2012, 33(1): 64-68.
Fu Hong-liang, Tao Hua-wei, Zhang Bei-bei. Grain storage temperature information processing based on compressive sensing[J]. Journal of Henan University of Technology(Natural Science Edition), 2012, 33(1): 64-68.
4 Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5702.
5 Kulkarni A, Mohsenin T. Low overhead architectures for OMP compressive sensing reconstruction algorithm[J]. IEEE Transactions on Circuits & Systems I: Regular Papers, 2017, 64(6): 1468-1480.
6 Wu G, Li X, Dai J. Improved measure algorithm based on CoSaMP for image recovery[J]. International Journal on Smart Sensing & Intelligent Systems, 2017, 7(2): 724-739.
7 Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery[J]. Communications on Pure and Applied Mathematics, 2010, 63(1): 1-38.
8 Candes E J, Wakin M B, Boyd P S. Enhancing sparsity by reweighted ℓ1-minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877-905.
9 Bu H, Tao R, Bai X, al et, Regularized smoothed ℓ0-norm algorithm and its application to CS-based radar imaging[J]. Signal Processing, 2016, 122(C): 115-122.
10 Chen D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach[M]. London: Springer, 2011.
11 王金铭, 叶时平, 徐振宇, 等. 半张量积低存储压缩感知方法研究[J]. 电子学报, 2018, 46(4): 797-804.
Wang Jin-ming, Ye Shi-ping, Xu Zhen-yu, et al. Low storage space of random measurement matrix for compressed sensing with semi-tensor product[J]. Acta Electronica Sinica, 2018, 46(4): 797-804.
12 Xie D, Peng H, Li L, et al. Semi-tensor compressed sensing[J]. Digital Signal Processing, 2016, 58: 85-92.
13 Wang J M, Zhu Z Y, Wang Z Q, et al. Rapid compressed sensing reconstruction: a semi-tensor product approach[J]. Information Sciences, 2020, 512(2020): 693-707.
14 Abolghasemi V, Ferdowsi S, Sanei S. A block-wise random sampling approach: compressed sensing problem[J]. Journal of AI and Data Mining, 2015, 3(1): 93-100.
15 程晓良, 郑璇, 韩渭敏. 求解欠定线性方程组稀疏解的算法[J]. 高校应用数学学报, 2013, 28(2): 235-248.
Cheng Xiao-liang, Zheng Xuan, Han Wei-min. Algorithms on the sparse solution of under-determined linear systems[J]. Applied Mathematics A: Journal of Chinese Universities, 2013, 28(2): 235-248.
[1] 郭立民,陈鑫,陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49(3): 1000-1008.
[2] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[3] 刘洲洲, 王福豹. 改进的离散混合蛙跳算法压缩感知信号重构及应用[J]. 吉林大学学报(工学版), 2016, 46(4): 1261-1268.
[4] 王新华, 欧阳继红, 庞武斌. 压缩编码孔径红外成像超分辨重建[J]. 吉林大学学报(工学版), 2016, 46(4): 1239-1245.
[5] 于华楠, 代芳琳, 苏天恺. 基于压缩感知的三相电能质量扰动信号压缩及分类新方法[J]. 吉林大学学报(工学版), 2016, 46(3): 964-971.
[6] 张轶, 达新宇, 褚振勇. 低密度奇偶校验码的压缩感知重构[J]. 吉林大学学报(工学版), 2015, 45(3): 985-990.
[7] 王宏志,王贤龙,周婷婷. 基于光滑0范数的图像分块压缩感知恢复算法[J]. 吉林大学学报(工学版), 2015, 45(1): 322-327.
[8] 田文飚, 芮国胜, 张海波, 王林. 下非均匀信息采集及重构[J]. 吉林大学学报(工学版), 2014, 44(4): 1209-1214.
[9] 贺岩, 赵晓晖. 理论的宽带多用户认知系统合作检测[J]. 吉林大学学报(工学版), 2014, 44(4): 1165-1170.
[10] 王好谦, 杜成立, 惠征. 一种新的多视点分布式视频编码算法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 225-229.
[11] 朱永贵, 刘平, 丛佳. 稀疏图像重构非凸Lp问题的分裂方法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 55-59.
[12] 葛亮, 胡封晔, 赵利英, 李莎莎. 基于WBAN的生物特征检测重构算法[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 213-216.
[13] 冯鑫, 王晓明, 党建武, 沈瑜. 基于插值Directionlet变换的图像融合方法[J]. 吉林大学学报(工学版), 2013, 43(04): 1127-1132.
[14] 康荣宗, 于宏毅, 田鹏武, 郭虹. 基于压缩感知的自适应干扰抑制算法[J]. , 2012, (06): 1587-1591.
[15] 赵春晖, 腾志军, 马爽. 基于广义功率谱密度的分布压缩宽带频谱感知[J]. , 2012, 42(04): 1015-1020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!