吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 1975-1981.doi: 10.13229/j.cnki.jdxbgxb20200613
• 车辆工程·机械工程 • 上一篇
Guo-fa LI1,2(),Ze-quan CHEN1,2,Jia-long HE1,2()
摘要:
为了在进行结构可靠性分析时,能够构建高精度、高效率的代理模型,提出了一种面向多种代理模型的基于通用学习函数(GLF)的结构可靠性分析自适应加点策略。该策略被视为一个多目标优化过程,GLF考虑了样本点间的平均距离和最小距离、是否分布在极限状态函数的附近以及联合概率密度函数等因素,使得自适应添加的样本点能稳健、高效地提升代理模型对失效概率的估计精度。数值案例和工程案例结果表明,针对不同的代理模型,GLF能够利用少量的样本点,高精度、高效率地估计出结构的失效概率。
中图分类号:
1 | Ghohani A H, Rashki M, Rostamian M, et al. Refined first-order reliability method using cross-entropy optimization method[J]. Engineering with Computers, 2019, 35(4):1507-1509. |
2 | Behrooz K, Subrata C. A hybrid self-adaptive conjugate first order reliability method for robust structural reliability analysis[J]. Applied Mathematical Modelling, 2018, 53: 319-332. |
3 | Lee C H, Kim Y. Probabilistic flaw assessment of a surface crack in a mooring chain using the first- and second-order reliability method[J]. Marine Structures, 2019, 63: 1-15. |
4 | Meng Z, Zhou H L, Hu H, et al. Enhanced sequential approximate programming using second order reliability method for accurate and efficient structural reliability-based design optimization[J]. Applied Mathematical Modelling, 2018, 62: 562-579. |
5 | Zhang X F, Wang L, Sørensen J D. REIF: a novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis[J]. Reliability Engineering & System Safety, 2019, 185: 440-454. |
6 | Marelli S, Sudret B. An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis[J]. Structural Safety, 2018, 75: 67-74. |
7 | Xu J, Kong F. A cubature collocation based sparse polynomial chaos expansion for efficient structural reliability analysis[J]. Structural Safety, 2018, 74: 24-31. |
8 | 孟广伟, 李广博, 周振平, 等. 基于Fourier正交基神经网络响应面法的结构可靠性分析[J]. 吉林大学学报:工学版, 2012, 42(): 135-138. |
Meng Guang-wei, Li Guang-bo, Zhou Zhen-ping, et al.Structure reliability analysis based on Fourier orthogonal neural network response surface method[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(Sup.1):135-138. | |
9 | Fan C B, Huang Y B, Wang Q F. Sparsity-promoting polynomial response surface: a new surrogate model for response prediction[J]. Advances in Engineering Software, 2014, 77: 48-65. |
10 | Rashki M, Azarkish H, Rostamian M, et al. Classification correction of polynomial response surface methods for accurate reliability estimation[J]. Structural Safety, 2019, 81: No.101869. |
11 | Roy A, Manna R, Chakraborty S. Support vector regression based metamodeling for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2019, 55:18-89. |
12 | Zhu C X, Zhao H B. Least square support vector machine for structural reliability analysis[J]. International Journal of Computer Applications in Technology, 2016, 53(1): 51-61. |
13 | Echard B, Gayton N, Lemaire M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33(2): 145-154. |
14 | Jiang C, Qiu H B, Gao L, et al. EEK-SYS: system reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces[J]. Reliability Engineering & System Safety, 2020,198: No.106906. |
15 | Lv Z, Lu Z Z, Wang P. A new learning function for Kriging and its applications to solve reliability problems in engineering[J]. Computers & Mathematics with Applications, 2015, 70(5): 1182-1197. |
16 | Sun Z L, Wang J, Li R, et al. LIF: a new Kriging based learning function and its application to structural reliability analysis[J]. Reliability Engineering & System Safety, 2017, 157: 152-165. |
17 | Wang Z Y, Shafieezadeh A. REAK: reliability analysis through error rate-based adaptive kriging[J]. Reliability Engineering & System Safety, 2019, 182: 33-45. |
18 | Yang X F, Liu Y S, Mi C Y, et al. System reliability analysis through active learning Kriging model with truncated candidate region[J]. Reliability Engineering & System Safety, 2018, 169: 235-241. |
19 | Bichon B J, Eldred M S, Swiler L P, et al. Efficient global reliability analysis for nonlinear implicit performance functions[J]. Aiaa Journal, 2008, 46(10): 2459-2468. |
20 | 肖宁聪,袁凯,王永山. 基于序列代理模型的结构可靠性分析方法[J]. 电子科技大学学报, 2019, 48(1): 156-160. |
Xiao Ning-cong, Yuan Kai, Wang Yong-shan. Structural reliability analysis using sequential surrogate models[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(1): 156-160. |
[1] | 杜尊令,张义民. 基于随机流量下柱塞泵的可靠性分析[J]. 吉林大学学报(工学版), 2021, 51(6): 1967-1974. |
[2] | 樊学平,杨光红,肖青凯,刘月飞. 大跨桥梁主梁失效概率分析的最优R-Vine Copula[J]. 吉林大学学报(工学版), 2021, 51(4): 1296-1305. |
[3] | 于向军,槐元辉,李学飞,王德武,俞安. 基于克里金和粒子群算法的装载机铲掘轨迹规划[J]. 吉林大学学报(工学版), 2020, 50(2): 437-444. |
[4] | 刘颖, 张凯, 于向军. 基于代理模型的中空轴式大型静压轴承多目标优化[J]. 吉林大学学报(工学版), 2017, 47(4): 1130-1137. |
[5] | 孟广伟, 冯昕宇, 周立明, 李锋. 基于降维算法的结构可靠性分析[J]. 吉林大学学报(工学版), 2017, 47(1): 174-179. |
[6] | 周志国, 卢江跃. 弯曲振动下压电陶瓷复合圆盘的可靠性分析[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 138-142. |
[7] | 姜封国, 赵景鲁. 受火后钢筋混凝土构件的可靠性[J]. 吉林大学学报(工学版), 2013, 43(06): 1500-1503. |
[8] | 王晓燕, 申桂香, 张英芝, 郑珊, 牛序磊, 梁栋. 基于DEMATEL方法的数控装备故障相关性分析[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 100-103. |
[9] | 孟广伟, 李广博, 周振平, 周立明. 基于Fourier正交基神经网络响应面法的结构可靠性分析[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 135-138. |
[10] | 张英芝1,郑锐2,申桂香1,王志琼1,李怀洋1,郑珊1. 基于Copula理论的数控装备故障相关性[J]. 吉林大学学报(工学版), 2011, 41(6): 1636-1640. |
[11] | 李艺,闫运起,赵文 . 现役结构增层刚度时变可靠性分析[J]. 吉林大学学报(工学版), 2009, 39(02): 398-0401. |
|