吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 754-763.doi: 10.13229/j.cnki.jdxbgxb20210172

• 车辆工程·机械工程 • 上一篇    

纯电动共享汽车驾驶行为对能耗的影响

纪少波1(),李洋1,李萌1,苏士斌2,马晓龙2,何绍清3,贾国瑞3,程勇1   

  1. 1.山东大学 能源与动力工程学院,济南 250061
    2.青岛海信网络科技股份有限公司,山东 青岛 256000
    3.中国汽车技术研究中心有限公司,天津 300300
  • 收稿日期:2021-02-06 出版日期:2022-04-01 发布日期:2022-04-20
  • 作者简介:纪少波(1979-),男,副教授,博士.研究方向:新能源汽车测控技术.E-mail:jobo@sdu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFB1600501);山东省重大科技创新工程项目(2019TSLH0203);山东省重点研发计划项目(2019GGX103042)

Influence of driving behavior on energy consumption of pure electric shared vehicles

Shao-bo JI1(),Yang LI1,Meng LI1,Shi-bin SU2,Xiao-long MA2,Shao-qing HE3,Guo-rui JIA3,Yong CHENG1   

  1. 1.School of Energy and Power Engineering,Shandong University,Jinan 250061,China
    2.Hisense Trans Tech Co. ,Ltd. ,Qingdao 256000,China
    3.China Automotive Technology and Research Center Co. ,Ltd. ,Tianjin 300300,China
  • Received:2021-02-06 Online:2022-04-01 Published:2022-04-20

摘要:

以某款纯电动共享汽车日常运行数据为研究对象,确定了5大类共25个驾驶行为特征参数。将车辆运行数据分为起步、停车和运行3个阶段,通过适用于高维大数据相关性分析的最大信息系数(MIC)算法计算了25个特征参数间的相关关系,研究了驾驶行为对能耗的影响规律,明确了不同车辆使用阶段下对总能耗和百公里能耗有显著影响的特征参数。结果表明:不同阶段对能耗产生显著影响的驾驶行为特征参数存在差异,通过对不同驾驶行为特征参数的影响规律分析,提出了不同阶段下节能降耗驾驶行为的优化建议。

关键词: 纯电动共享汽车, 驾驶行为, 特征参数, 最大信息系数

Abstract:

In this paper, the daily operation data of a pure electric shared vehicles was taken as the research object, and 25 driving behavior characteristic parameters of five categories were determined. Vehicles′ data were divided into starting, parking and running three phases. The correlation among 25 characteristic parameters was calculated by the maximum information coefficient (MIC) algorithm, which is suitable for correlation analysis of high?dimensional big data. The effect law of driving behavior was studied in energy consumption. The characteristic parameters that have significant influence on total energy consumption and 100 km energy consumption at different vehicle service stages were identified. The results show that there are differences in driving behavior characteristic parameters that have significant effects on energy consumption in different stages. Through analyzing the influence rules of different driving behavior characteristic parameters, optimization suggestions for energy saving and consumption reduction driving behaviors in different stages are put forward.

Key words: pure electric shared vehicle, driving behavior, characteristic parameters, maximum information coefficient

中图分类号: 

  • U471.15

图1

行车事件的划分"

表1

驾驶行为特征参数"

缩略名中文名称缩略名中文名称
Mean_V平均车速Mean_BP制动踏板平均开度
Std_V车速标准差dBP制动踏板开度变化率
Max_A最大加速度Std_dBP制动踏板开度变化率标准差
Mean_A平均加速度Max_C方向盘最大转角
Max_dRA最大加速度变化率Mean_C方向盘平均转角
Max_SA最大减速度dC方向盘变化率
Mean_SA平均减速度Total_Energy总能耗
Max_dSA最大减速度变化率Energy100百公里能耗
Max_GP最大加速踏板开度RA加速时间占比
Mean_GP加速踏板平均开度Rc匀速时间占比
dGP加速踏板开度变化率Rd减速时间占比
Std_dGP加速踏板开度变化率标准差Ri怠速时间占比
Max_BP最大制动踏板开度

图2

起步阶段各驾驶行为特征参数与能耗的相关性"

图3

平均车速对能耗的影响"

图4

加速踏板平均开度对能耗的影响"

图5

车速标准差对能耗的影响"

图6

停车阶段各驾驶行为特征参数与能耗的相关性"

图7

平均车速对能耗的影响"

图8

各运动状态对能耗的影响"

图9

运行阶段各驾驶行为特征参数与能耗的相关性"

图10

运行时间对能耗的影响"

图11

平均车速对能耗的影响"

图12

加速踏板平均开度及车速标准差对能耗的影响"

1 Chen Si-cong. On the relationship between energy consumption and driving behavior of electric vehicles based on statistical features[C]∥Chinese Control Conference, Guangzhou, China,2019: 730-735.
2 Han Q, Hu X, He S, et al. Evaluate good bus driving behavior with LSTM[C]∥The 5th International Conference on Internet of Vehicles Technologies and Services Towards Smart City. Paris, France: Springer International Publishing, 2018:122-32.
3 Larusdottir E B, Ulfarsson G F. Effect of driving behavior and vehicle characteristics on energy consumption of road vehicles running on alternative energy sources[J]. International Journal of Sustainable Transportation, 2015, 9(8): 592-601.
4 魏涛. 车联网环境下汽车节能驾驶行为与速度优化方法研究[D]. 西安: 长安大学信息工程学院, 2019.
Wei Tao. Research on energy-saving driving behavior and speed optimization method of vehicles in internet of vehicles environment[D]. Xi'an: School of Information Engineering, Chang'an University, 2019.
5 王萍,万蔚,张克, 等.出租车驾驶员生态驾驶行为评价[J]. 交通工程,2018,18(6):41-44, 50.
Wang Ping, Wan Wei, Zhang Ke, et al. Evaluation of low energy consumption driving behavior of taxi drivers[J]. Journal of Transportation Engineering, 2018, 18(6): 41-44, 50.
6 赵晓华, 陈晨, 伍毅平, 等. 出租车驾驶员驾驶行为对油耗的影响及潜力分析[J].交通运输系统工程与信息,2015,15(4):85-91.
Zhao Xiao-hua, Chen Chen, Wu Yi-ping, et al. The effect and potential study of eco-driving on taxi fuel consumption [J]. Journal of Transportation Systems Engineering and Information Technology, 2015,15(4):85-91.
7 李萌. 基于车辆运行数据的驾驶能耗及驾驶风格分类分析[D]. 济南: 山东大学能源与动力工程学院, 2020.
Li Meng. Classification analysis of driving energy consumption and driving style based on vehicle running data[D]. Ji'nan: School of Energy and Power Engineering,Shandong University, 2020.
8 李熙,冯拔,谢勇波,等. 基于决策树的司机驾驶行为研究[J]. 控制与信息技术,2019, 41(5):17-20, 26.
Li Xi, Feng Ba, Xie Yong-bo, et al. Study on driver driving behavior based on decision tree[J]. Control and Information Technology, 2019, 41(5): 17-20, 26.
9 李佩,彭斯俊. 一种新的组合权重在组合预测模型中的应用[J].河南科技大学学报: 自然科学版,2018,39(2):87-93, 98.
Li Pei, Peng Si-jun. Application of a new combination weight in combination prediction model[J]. Journal of Henan University of Science and Technology(Natural Science), 2018, 39(2):87-93, 98.
10 张长聪,刘庆华,刘根,等. 基于改进灰色关联分析的雷达费用驱动因子选取方法[J]. 兵器装备工程学报,2019,40(8):130-135.
Zhang Chang-cong, Liu Qing-hua, Liu Gen, et al. Selection method of radar cost driver based on improved grey correlation analysis[J]. Journal of Ordnance Equipment Engineering, 2019, 40(8): 130-135.
11 刘震,党耀国,周伟杰, 等. 新型灰色接近关联模型及其拓展[J].控制与决策,2014,29(6):1071-1075.
Liu Zhen, Dang Yao-guo, Zhou Wei-jie, et al. New ggrey nearness incidence model and its extension[J]. Control and Decision, 2014, 29(6): 1071-1075.
12 Reshef D N, Reshef Y A, Finucane K H, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.
13 王文广,王朔,赵文杰. 基于最大信息系数变量选择的电站锅炉NO x 排放量在线预估[J]. 华北电力大学学报: 自然科学版,2019,46(6):66-72.
Wang Wen-guang, Wang Shuo, Zhao Wen-jie. On-line estimation of NO x emissions from power plant boilers based on variable selection of maximum information coefficient[J]. Journal of North China Electric Power University(Natural Science Edition), 2019, 46(6): 66-72.
14 靳冰洁,张步涵,姚建国,等. 基于信息熵的大型电力系统元件脆弱性评估[J].电力系统自动化,2015,39(5):61-68.
Jin Bing-jie, Zhang Bu-han, Yao Jian-guo, et al. Vulnerability assessment of large power system components based on information entropy[J]. Automation of Electric Power Systems, 2015, 39(5): 61-68.
15 尹世庄,王韬,谢方方,等. 基于互信息和轮廓系数的聚类结果评估方法[J].兵器装备工程学报,2020,41(8):207-213.
Yin Shi-zhuang, Wang Tao, Xie Fang-fang, et al. Clustering result evaluation method based on mutual information and contour coefficient[J]. Journal of Ordnance Equipment Engineering, 2020, 41(8): 207-213.
[1] 徐进,潘存书,符经厚,刘俊,王郸祁. 典型道路场景以及场景切换时的速度行为特性[J]. 吉林大学学报(工学版), 2021, 51(4): 1331-1341.
[2] 万平,吴超仲,马晓凤. 基于ROC曲线和驾驶行为特征的驾驶愤怒强度判别阈值[J]. 吉林大学学报(工学版), 2020, 50(1): 121-131.
[3] 江亮,贺宜. 电动两轮车风险驾驶行为及事故影响因素分析[J]. 吉林大学学报(工学版), 2019, 49(4): 1107-1113.
[4] 万平, 吴超仲, 林英姿, 马晓凤. 基于驾驶行为多元时间序列特征的愤怒驾驶状态检测[J]. 吉林大学学报(工学版), 2017, 47(5): 1426-1435.
[5] 王海玮, 温惠英, 刘敏. 夜间环境驾驶员精神负荷的生理特性评估与实验[J]. 吉林大学学报(工学版), 2017, 47(2): 420-428.
[6] 郭应时, 付锐, 赵凯, 马勇, 袁伟. 驾驶人换道意图实时识别模型评价及测试[J]. 吉林大学学报(工学版), 2016, 46(6): 1836-1844.
[7] 张波,王文军,魏民国,成波. 基于机器视觉的驾驶人使用手持电话行为检测[J]. 吉林大学学报(工学版), 2015, 45(5): 1688-1695.
[8] 金立生,牛清宁,刘景华,秦彦光,吕欢欢. 不同道路线形下驾驶人认知分散状态监测[J]. 吉林大学学报(工学版), 2014, 44(3): 642-647.
[9] 孙智勇, 孙小端. 高速公路施工区车辆汇入的可接受间隙[J]. , 2012, (06): 1470-1474.
[10] 李居朋, 谈振辉, 陶成, 徐少毅. 基于多特征参数模型聚类的动态频谱接入策略[J]. , 2012, 42(04): 1021-1026.
[11] 郭孜政, 陈崇双, 闫伟, 宋伟, 张之勇. 驾驶威胁感知评估方法[J]. 吉林大学学报(工学版), 2012, 42(01): 46-50.
[12] 任园园, 李显生, 席建锋. 驾驶行为决策风险的多维结构模型[J]. 吉林大学学报(工学版), 2011, 41(02): 343-0348.
[13] 郭孜政, 陈崇双, 王欣, 陈亚青, 谭永刚. 基于FCM的驾驶行为险态辨识模型[J]. 吉林大学学报(工学版), 2010, 40(02): 427-0430.
[14] 施树明, 金立生, 王荣本, 童兵亮. 基于机器视觉的驾驶员嘴部状态检测方法[J]. 吉林大学学报(工学版), 2004, (2): 232-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!