吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1836-1844.doi: 10.13229/j.cnki.jdxbgxb201606011
郭应时1, 付锐1, 2, 赵凯1, 马勇1, 袁伟1
GUO Ying-shi1, FU Rui1, 2, ZHAO Kai1, MA Yong1, YUAN Wei1
摘要:
通过分析驾驶人换道行为和车辆运动状态,研究了意图换道和车道保持阶段的差异性,并基于BP神经网络模型和证据理论识别模型,对意图换道进行了实时识别试验。结果表明:两种模型在换道前3 s对意图换道样本识别准确率分别为78.26%、45.22%,在换道时刻的识别准确率分别为99.13%、86.96%;随机选择样本对两种识别模型进行验证,意图换道样本的识别准确率分别为86.00%、96.00%,车道保持样本的识别准确率分别为21.05%、78.95%,同时模型识别出正确样本的最长时间均小于0.5 s,表明证据理论识别模型具有较高的优越性和实用性。
中图分类号:
[1] 侯海晶. 高速公路驾驶人换道意图识别方法研究[D]. 长春: 吉林大学交通学院, 2013. Hou Hai-jing. Research on lane-changing intention recognition method for freeway driver[D].Changchun: College of Transportation, Jilin University, 2013. [2] 李亚秋,吴超仲,马晓凤,等. 基于EKF学习方法的BP神经网络汽车换道意图识别模型研究[J]. 武汉理工大学学报:交通科学与工程版,2013,37(4):843-847. Li Ya-qiu, Wu Chao-zhong, Ma Xiao-feng, et al. A recognition model for lane change intention based on neural network with EKF algorithm[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2013,37(4):843-847. [3] 马勇,石涌泉,付锐,等. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报:工学版,2015,45(4):1095-1101. Ma Yong, Shi Yong-quan, Fu Rui, et al. Impact of driver's distracted driving time on vehicle lane departure[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(4): 1095-1101. [4] Salvucci D D, Liu A. The time course of a lane change: driver control and eye-movement behavior[J]. Transportation Research Part F: Traffic Psychology and Behavior,2002,5(2):123-132. [5] Jang Y M, Mallipeddi R, Lee M. Driver's lane-change intent identification based on pupillary variation[C]∥IEEE International Conference on Consumer Electronics,New York, 2014:197-198. [6] 马勇,付锐. 驾驶人视觉特性与行车安全研究进展[J]. 中国公路学报,2015,28(6):82-94. Ma Yong, Fu Rui. Research and development of drivers visual behavior and driving safety[J]. China Journal of Highway and Transport,2015,28(6):82-94. [7] Liu A, Pentland A. Towards real-time recognition of driver intentions[C]∥IEEE Conference on Intelligent Transportation System, New York,1997:236-241. [8] Tezuka S, Soma H, Tanifuji K. A study of driver behavior inference model at time of lane change using Bayesian networks[C]∥Proceedings of IEEE International Conference on Industrial Technology, New York,2006:2308-2313. [9] Dogan U, Edelbrunner J, Iossifidis I. Autonomous driving: a comparison of machine learning techniques by means of the prediction of lane change behavior[C]∥IEEE International Conference on Robotics and Biomimetics,New York,2011:1837-1843. [10] Doshi A. Learning and inferring human intentions: exploration of attention and interactivity[D]. San Diego: University of California, 2010. [11] Doshi A, Trivedi M M. On the roles of eye gaze and head dynamics in predicting driver's intent to change lanes[J]. IEEE Transactions on Intelligent Transportation Systems,2009,10(3): 453-462. [12] 彭金栓. 基于视觉特性与车辆相对运动的驾驶人换道意图识别方法[D]. 西安:长安大学汽车学院,2012. Peng Jin-shuan. Driver's lane change intent identification based on visual characteristics and vehicles' relative movements[D]. Xi'an: School of Automobile, Chang'an University, 2012. [13] 袁伟,付锐,郭应时,等. 基于视觉特性的驾驶人换道意图识别[J]. 中国公路学报,2013,26(4):132-138. Yuan Wei, Fu Rui, Guo Ying-shi et al. Driver's lane changing intention identification based on visual characteristics[J]. China Journal of Highway and Transport, 2013,26(4): 132-138. [14] 马勇,付锐,郭应时,等. 基于实车试验的驾驶人换道行为多参数预测[J]. 长安大学学报:自然科学版,2014,34(5):101-108. Ma Yong, Fu Rui, Guo Ying-shi, et al. Multi-parameter prediction of driver's lane change behavior based on real-world driving tests[J]. Journal of Chang'an University (Natural Science Edition), 2014,34(5):101-108. [15] 王玉海,宋健,李兴坤.基于模糊推理的驾驶员意图识别研究[J]. 公路交通科技, 2005, 22(12):113-118. Wang Yu-hai,Song Jian,Li Xing-kun. Study on inference of driver's intentions based on fuzzy reasoning[J]. Journal of Highway and Transportation Research and Development,2005,22(12):113-118. [16] 吴海波. 基于BP神经网络的驾驶人车道变换行为预测[D]. 西安:长安大学汽车学院,2010. Wu Hai-bo. The prediction of driver's lane-changing behavior based on BP neural network[D]. Xi'an: School of Automobile, Chang'an University, 2010. [17] 王畅,付锐,张琼,等. 换道预警系统中参数TTC特性研究[J]. 中国公路学报,2015,28(8):91-100,108. Wang Chang,Fu Rui,Zhang Qiong, et al. Research on parameter TTC characteristics of lane change warning system[J]. China Journal of Highway and Transport,2015,28(8):91-100,108. |
[1] | 代存杰,李引珍,马昌喜,柴获,牟海波. 不确定条件下危险品配送路线多准则优化[J]. 吉林大学学报(工学版), 2018, 48(6): 1694-1702. |
[2] | 刘东亮, 王秋爽. 基于NGSIM数据的车辆瞬时速度获取方法[J]. 吉林大学学报(工学版), 2018, 48(1): 330-335. |
[3] | 王芳荣, 郭柏苍, 金立生, 高琳琳, 岳欣羽. 次任务驾驶安全评价指标筛选及其权值计算[J]. 吉林大学学报(工学版), 2017, 47(6): 1710-1715. |
[4] | 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1738-1744. |
[5] | 万平, 吴超仲, 林英姿, 马晓凤. 基于驾驶行为多元时间序列特征的愤怒驾驶状态检测[J]. 吉林大学学报(工学版), 2017, 47(5): 1426-1435. |
[6] | 李显生, 孟祥雨, 郑雪莲, 程竹青, 任圆圆. 非满载罐体内液体冲击动力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 737-743. |
[7] | 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报(工学版), 2017, 47(3): 751-755. |
[8] | 王德军, 吕志超, 王启明, 张贤达, 王子健. 基于汽缸压力辨识的发动机失火故障诊断[J]. 吉林大学学报(工学版), 2017, 47(3): 917-923. |
[9] | 黄璇, 郭立红, 李姜, 于洋. 改进粒子群优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002. |
[10] | 王海玮, 温惠英, 刘敏. 夜间环境驾驶员精神负荷的生理特性评估与实验[J]. 吉林大学学报(工学版), 2017, 47(2): 420-428. |
[11] | 徐进, 陈薇, 周佳, 罗骁, 邵毅明. 汽车转向盘操作与驾驶负荷的相关性[J]. 吉林大学学报(工学版), 2017, 47(2): 438-445. |
[12] | 栾磊, 赵晓晖, 徐勇军. 面向区域的认知无线电系统的频谱感知模型[J]. 吉林大学学报(工学版), 2016, 46(4): 1304-1312. |
[13] | 孙璐, 徐建, 崔相民. 面板数据模型分析及交通事故预测[J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778. |
[14] | 李寿涛, 田微, 郭鹏程, 马用学, 张浩, 王楠. 基于模糊自适应的BP神经网络动态行驶车辆车长测算[J]. 吉林大学学报(工学版), 2015, 45(6): 1881-1886. |
[15] | 高明亮, 于生宝, 郑建波, 徐畅, 张堃, 栾卉. PSBP在高密度电阻率法二维反演中的应用[J]. 吉林大学学报(工学版), 2015, 45(6): 2026-2033. |
|