吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 847-855.doi: 10.13229/j.cnki.jdxbgxb20200899

• 交通运输工程·土木工程 • 上一篇    

液化微倾场地群桩地震反应分析拟静力方法

唐亮1,2(),司盼1,2,崔杰1,2,凌贤长1,3,满孝峰1,2   

  1. 1.哈尔滨工业大学 土木工程学院,哈尔滨 150090
    2.哈尔滨工业大学 黑龙江省寒区轨道交通工程技术研究中心,哈尔滨 150090
    3.青岛理工大学 土木工程学院,山东 青岛 266033
  • 收稿日期:2020-11-25 出版日期:2022-04-01 发布日期:2022-04-20
  • 作者简介:唐亮(1981-),男,教授,博士生导师.研究方向:土动力学与岩土地震工程,冻土与高铁路基工程,地下工程.E-mail:tangliang@hit.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFE0205100);国家自然科学基金项目(51578195);黑龙江省应用技术研究与开发计划项目(GA19A501)

Pseudo-static analysis method of pile group earthquake response in liquefying mild inclined sloping ground

Liang TANG1,2(),Pan SI1,2,Jie CUI1,2,Xian-zhang LING1,3,Xiao-feng MAN1,2   

  1. 1.School of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China
    2.Heilongjiang Research Center for Rail Transit Engineering in Cold Regions,Harbin Institute of Technology,Harbin 150090,China
    3.School of Civil Engineering,Qingdao University of Technology,Qingdao 266033,China
  • Received:2020-11-25 Online:2022-04-01 Published:2022-04-20

摘要:

采用水?土动力耦合四节点等参单元,结合可准确描述砂土液化特性和累积剪切变形特性的多屈服面弹塑性本构模型,建立了液化微倾场地群桩?土动力相互作用有限元模型。随后,利用此模型计算获得正弦荷载作用下桩?土动力p?y曲线,以场地倾斜角度和埋深作为主控因素,对API规范计算公式中极限土阻力参数进行修正,提出修正系数。最后,基于非线性文克尔地基梁模型,提出液化微倾场地群桩?土相互作用拟静力方法,并通过有限元分析结果验证,拟静力方法的正确性和可靠性,据此研究桩模量、桩底连接刚度和桩径对桩基地震响应的影响规律。研究表明:随着桩基模量和桩底连接刚度的增加,桩侧向位移减小;保持桩基抗弯刚度不变,桩的弯矩和位移随着桩径增大而显著增加。

关键词: 岩土工程, 液化微倾场地, 动力p?y曲线, 拟静力方法, 参数分析

Abstract:

First, using quadUP element with water-soil dynamic coupling and a multi-yield plastic constitutive model that can accurately describe the liquefaction characteristics of sand and the accumulation of shear deformation, a two-dimensional finite element numerical model of pile-soil dynamic interaction in liquefying mild inclined sloping ground is established. Then, this model is used to obtain the dynamic p-y curve under sinusoidal load. The slope angles and the depth are selected as the control indexes to establish the formula of dynamic p-y curve of saturated sand. Third, combined with the nonlinear Winkler foundation beam model, the pseudo-static analysis model of pile-soil interaction in liquefiable mild inclined ground was established. Based on the finite element analysis results, the validation of the pseudo-static analysis method was achieved before presentation of a detailed parametric study on the pile dynamic response. The results show that the displacement of pile decreases with the increase of the modulus of pile foundation and the rigidity of pile bottom connection. When the bending stiffness of pile foundation is constant, the bending moment and displacement of pile increase significantly with the increase of pile diameter.

Key words: geotechnical engineering, liquefying inclined ground, dynamic p-y curve, pseudo-static analysis, parameter analysis

中图分类号: 

  • TU473

图1

桩?土动力相互作用有限元模型?[18]"

表1

砂土本构模型计算参数[19]"

参 数松 砂参 数松 砂
密度ρ/(kg·m-31900剪缩系数c10.2
参考剪切模量Gr /kPa64000剪胀系数d10.4
参考体积模量Br /kPa200000剪胀系数d20.2
摩擦角?/(o)32液化系数l110
峰值剪应变γmax0.1液化系数l20.2
参考围压Pr /kPa100液化系数l31.0
围压系数np0.5屈服面数量n11
相位转换角?PT /(o)27

图2

基底激励"

图3

折减系数与孔压比关系"

图4

动力p-y曲线滞回圈顶点 (以场地倾斜2°下坡桩为例)"

图5

动力p?y曲线与API规范、p?乘因子法对比(以场地倾斜2°下坡桩为例)"

图6

动力p?y曲线计算值与修正值对比(以场地倾斜2°下坡桩为例)"

图7

比例系数与埋深的关系"

图8

比例系数与倾斜因子的关系"

图9

埋深与斜率及埋深与截距的关系"

图10

拟静力分析模型"

图11

自由场土层峰值位移"

图12

拟静力方法和数值计算结果对比 (下坡桩)"

图13

桩模量对桩响应的影响 (场地倾斜2°)"

图14

桩底连接刚度对桩响应的影响(场地倾斜2°)"

图15

桩径对桩响应的影响(场地倾斜2°)"

1 Fiegel G L, Kutter B L. Liquefaction-induced lateral spreading of mildly sloping ground[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2236-2243.
2 Brandenberg S-J, Boulanger R-W, Kutter B-L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378-1391.
3 Knappett J-A, S-P-G Madabhushi. Liquefaction-induced settlement of pile groups in liquefiable and laterally spreading soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(11): 1609-1618.
4 汪明武, Tobita T, Iai S. 倾斜液化场地桩基地震响应离心机试验研究[J]. 岩石力学与工程学报, 2009, 28(10): 2012–2017.
Wang Min-gwu, Tobita T, Iai S. Dynamic centrifuge tests of seismic responses of pile foundations ininclined liquefiable soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 8(10): 2012–2017.
5 Ebeido A, Elgamal A, Tokimatsu K, et al. Pile and pile-group response to liquefaction-inducedlateral spreading in four large-scale shake-table experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): No. 04019080.
6 Ashford S A, Juirnarongrit T, Sugano T, et al. Soil–pile response to blast-induced lateral spreading. I: field test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 152-162.
7 Wang Rui, Fu Peng-cheng, Zhang Jian-min. Finite element model for piles in liquefiable ground[J]. Computers and Geotechnics, 2016, 72: 1-14.
8 Chang Dong-dong, Boulanger R, Brandenberg S, et al. FEM analysis of dynamic soil-pile-structure interaction in liquefied and laterally spreading ground[J]. Earthquake Spectra, 2013, 29(3): 733-755.
9 唐亮, 凌贤长, 艾哈迈德·艾格玛. 液化侧向流动场地桩基动力反应振动台试验三维有限元数值模拟方法[J]. 土木工程学报, 2013, 46(): 180-184.
Tang Liang, Ling Xian-zhang, Agma Ahmed. Liquefaction lateral flow site pile foundation dynamic reaction shaker test three-dimensional finite element numerical simulation method[J]. China Civil Engineering Journal, 2013, 46(S1): 180-184.
10 Tabesh A. Lateral seismic analysis of piles[D]. Sydney: University of Sydney, 1997.
11 Miura F. Nonlinear analyses of piles subjected to liquefaction-induced large ground deformation[C]∥Proc of the Third Japan-US Workshopon Earthquake Resistant Design of Lifeline Facilities and Countermeasures For Soil Lique,Tokyo,Japan, 1990: 497-512.
12 Liu L, Dobry R. Effect of liquefaction on lateral response of piles by centrifuge model tests[C]∥Workshop on New Approaches to Liquefaction Analysis, 1999.
13 Japanese Road Association. Specification for Highway Bridges, part V: seismic design[C]∥The International Workshop on Limit State Design in Geotechnical Engineering Practice, Tokyo, Japan, 1996.
14 Choobbasti A J, Zahmatkesh A. Computation of degradation factors of p-y curves in liquefiable soils for analysis of piles using three-dmensional finite element model[J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 61-74.
15 Wang X W, Luo F Y, Su Z Y, et al. Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization[J]. International Journal of Geomechanics, 2017, 17(6): No. 6016039.
16 Choobbasti A J, Zahmatkesh A. Computation of degradation factors of p-y curves in liquefiable soils for analysis of piles using three-dmensional finite element model[J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 61-74.
17 苏雷. 液化侧向扩展场地桩-土体系地震模拟反应分析[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2016.
Su Lei. Earthquake simulation response of soil-pile system in liquefaction-induced lateral spreading ground[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2016.
18 Yang Z H, Elgamal A, Parra E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.
19 American Petroleum Institute (API). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms(RP2A-WSD)[M].Washington: Springer, 1987.
20 凌贤长, 唐亮. 液化场地桩基侧向响应分析中p-y曲线模型研究进展[J]. 力学进展, 2010, 40(3):250-262.
Ling Xian-zhang, Tang Liang. Research progress of p-y curves model in lateral response analysis of pile foundation in liquefaction site[J]. Advances in Mechanics, 2010, 40(3): 250-262.
21 Brandenberg S J, Boulanger R W, Kutter B L, et al. Behavior of pile foundations in laterally spreading ground during centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1378-1391.
22 Liu L, Dobry R. Efiect of liquefaction on lateral response of piles by centrifuge model tests[J]. National Center for Earthquake Engineering Research (NCEER) Bulletin, 1995, 9(1): 7-11.
23 唐亮. 液化场地桩⁃土动力相互作用p-y曲线模型研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2010.
Tang Liang. p-y model of dynamic pile-soil interaction in liquefying ground[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2010.
24 Boulanger R W, Curras C J, Kutter B L, et al. Seismic soil-pile-structure interaction experiments and analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759.
[1] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[2] 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637.
[3] 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640.
[4] 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164.
[5] 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报(工学版), 2019, 49(6): 1891-1899.
[6] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[7] 张阔, 谭庆昌, 王顺, 王聪慧, 王春艳. 表面粗糙度幅值对点接触混合润滑的影响[J]. 吉林大学学报(工学版), 2012, 42(02): 377-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!