吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 2068-2078.doi: 10.13229/j.cnki.jdxbgxb20200670

• 交通运输工程·土木工程 • 上一篇    

悬索桥主索鞍承载力影响因素及结构优化

钟昌均1,2(),王忠彬3(),柳晨阳1   

  1. 1.西南交通大学 土木工程学院,成都 610031
    2.东南大学 土木工程学院,南京 211189
    3.中铁大桥勘测设计院集团有限公司,武汉 430050
  • 收稿日期:2020-09-03 出版日期:2021-11-01 发布日期:2021-11-15
  • 通讯作者: 王忠彬 E-mail:793713337@qq.com;wangzb@bri.com.cn
  • 作者简介:钟昌均(1995-),男,博士研究生. 研究方向:现代桥式及桥梁结构设计理论. E-mail:793713337@qq.com
  • 基金资助:
    国家自然科学基金项目(51178396)

Influencing factors and structural optimization of main cable saddle bearing capacity of suspension bridge

Chang-jun ZHONG1,2(),Zhong-bin WANG3(),Chen-yang LIU1   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.School of Civil Engineering,Southeast University,Nanjing 211189,China
    3.China Railway Bridge Survey and Design Institute Group Co. ,Ltd. ,Wuhan 430050,China
  • Received:2020-09-03 Online:2021-11-01 Published:2021-11-15
  • Contact: Zhong-bin WANG E-mail:793713337@qq.com;wangzb@bri.com.cn

摘要:

为了解决主索鞍安全性与经济性间的矛盾,对主索鞍极限承载力及其影响因素进行了研究。通过对悬索桥主索鞍结构设计参数进行归纳和总结,利用Autodesk Inventor软件建立了参数化几何模型,导入大型通用有限元软件ABAQUS中进行大量数值模拟,系统研究了主索鞍承载力影响因素及其变化规律,并对结构进行合理优化。结果表明:原设计索鞍的极限承载力为设计荷载的3倍,具有足够的安全储备;铸钢材料强度对主索鞍承载力有很大影响,而容器钢材料强度对主索鞍承载力的影响很小;横肋厚度及数量对索鞍承载力有很大影响,鞍槽侧壁厚度、是否设置横肋的纵向加劲肋以及腹板厚度对索鞍承载力的影响较小;随着索鞍横向尺寸的减小,索鞍横向刚度和极限承载力也随之下降;优化后的索鞍其极限承载力降低了10%,但用钢量降低了20%。

关键词: 桥梁工程, 主索鞍, 极限承载力, 参数分析, 结构优化

Abstract:

In order to solve the contradiction between the safety and economy of the main saddle of suspension bridge, the ultimate bearing capacity and influencing factors of the main saddle were studied. By summarizing the design parameters of the main saddle structure of the suspension bridge, the parametric geometric model is established using Autodesk Inventor software, and the large-scale general finite element software ABAQUS is imported for large number of numerical simulation studies. The influencing factors of the cable saddle bearing capacity and their changing law are investigated, and the reasonable optimization of the structure is performed. The analysis results show that the ultimate bearing capacity of the original design cable saddle is 3.00 times the design load, which has sufficient safety reserves. The strength of cast steel material has great influence on the bearing capacity of the main cable saddle, while the material strength of the container steel has little influence. The thickness and number of the transverse ribs has a great influence on the load-bearing capacity of the saddle. The thickness of the sidewall of the saddle groove, whether the longitudinal stiffener is provided with transverse ribs, and the thickness of the web have less influence on the load-bearing capacity of the saddle. The transverse rigidity and ultimate bearing capacity of the saddle will decrease with reduction of the transverse size of the saddle. The ultimate bearing capacity of the optimized saddle is reduced by 10%, while the steel consumption is reduced by 20%.

Key words: bridge engineering, main cable saddle, ultimate bearing capacity, parameter analysis, structural optimization

中图分类号: 

  • U448.25

图1

龙潭大桥主索鞍初步设计示意图"

图2

主索鞍参数示意图"

表1

径向荷载计算表"

Fcnnsrvfsr/(N·mm-1fsrp/MPa
446 579131269 0005 12030.66
446 579121269 0004 72665.63
446 579111269 0004 33260.17
446 579101269 0003 93854.70
446 57991269 0003 54449.23
446 57981269 0003 15043.76
446 57971269 0002 75741.14

图3

索鞍设计荷载及边界情况"

图4

有限元模型示意图"

图5

关键点示意图"

图6

铸钢材料对承载力的影响"

图7

焊接板件材料对承载力的影响"

图8

横肋板厚对承载力的影响"

图9

鞍槽壁厚对承载力的影响"

图10

设置加劲纵肋与否横肋中点位移-荷载倍数曲线"

图11

中间纵肋厚度对承载力的影响"

图12

索鞍横向尺寸缩减对承载力的影响"

图13

横肋数量对承载力的影响"

图14

参数敏感性分析"

图15

考虑横肋厚度和鞍槽壁厚共同影响的关键点荷载-位移曲线"

图16

索鞍各优化阶段承载力分析"

表2

各优化阶段索鞍质量变化情况"

优化阶段索鞍质量/kg
铸钢Q345R总计
设计尺寸77 49888 966166 464
BH100-CB6065 75288 670154 422
不设置加劲纵肋65 75281 536147 288
横向缩减300 mm63 59870 916134 514
1 贾界峰,涂金平,周泳涛,等. 空间索面自锚式悬索桥主索鞍计算方法[J]. 桥梁建设, 2007, 37(5): 38-41.
Jia Jie-feng, Tu Jin-ping, Zhou Yong-tao, et al. Calculation method of main cable saddle for self-anchored suspension bridge with spatial cable plane[J]. Bridge Construction, 2007, 37(5): 38-41.
2 杜万强. 某悬索桥主索鞍应力试验及数值分析[J]. 铁道建筑, 2013, 18(2): 18-19.
Du Wan-qiang. Stress test and numerical analysis of the main saddle of a suspension bridge[J]. Railway Construction, 2013, 18(2): 18-19.
3 方国强,林韬. 岳阳洞庭湖大桥主索鞍受力分析[J]. 市政技术, 2013, 31(3): 56-57, 60.
Fang Guo-qiang, Lin Tao. Force analysis of the main cable saddle of Yueyang Dongting lake bridge[J]. Municipal Technology, 2013, 31(3): 56-57, 60.
4 黄奶清,李亚平,黄吉滔. 悬索桥主塔索鞍计算分析研究[J]. 工程与建设, 2014, 28(2): 185-186.
Huang Nai-qing, Li Ya-ping, Huang Ji-tao. Calculation and analysis of suspension bridge main tower saddle[J]. Engineering and Construction, 2014, 28(2): 185-186.
5 李俊,卫星,李小珍,等. 大型钢网壳结构铸钢节点复杂受力的试验研究[J]. 土木工程学报, 2005, 38(6): 8-12, 19,53.
Li Jun, Wei Xing, Li Xiao-zhen, et al. Experimental study on complex forces of cast steel joints of large steel reticulated shell structure[J]. China Civil Engineering Journal, 2005, 38(6): 8-12, 19,53.
6 陈誉, 魏琳. 圆支管-H型钢主管T型节点抗压性能试验研究[J]. 土木工程学报, 2013, 46(12): 25-32.
Chen Yu, Wei Lin. Experimental study on compressive performance of circular branch pipe-H-shaped steel main pipe T-joint[J]. China Civil Engineering Journal, 2013, 46(12): 25-32.
7 王朝波,赵宪忠,陈以一,等. 上海铁路南站外柱异形铸钢节点承载性能研究[J]. 土木工程学报, 2008, 41(1): 18-23.
Wang Chao-bo, Zhao Xian-zhong, Chen Yi-yi, et al. Research on bearing performance of special-shaped cast steel joints for outer column of Shanghai South Railway Station[J]. China Civil Engineering Journal, 2008, 41(1): 18-23.
8 王萌,石永久,王元清,等. 空间网壳相贯节点受力性能有限元分析[J]. 建筑结构, 2013, 43(21): 9-13, 37.
Wang Meng, Shi Yong-jiu, Wang Yuan-qing, et al. Finite element analysis of mechanical performance of intersecting joints of space reticulated shell[J]. Building Structure, 2013, 43(21): 9-13, 37.
9 杨渊. 铸钢件力学性能试验研究及铸钢塔结构分析[D]. 天津:天津大学建筑工程学院, 2017.
Yang Yuan. Experimental research on mechanical properties of steel castings and structural analysis of cast steel towers[D]. Tianjin: School of Civil Engineering and Architecture, Tianjin University, 2017.
10 秦蓬军. 铸钢柱脚的性能研究[D]. 西安:西安建筑科技大学土木工程学院, 2005.
Qin Peng-jun. Research on the performance of cast steel column foot[D]. Xi'an: School of Civil Engineering, Xi'an University of Architecture and Technology, 2005.
11 张达明. 复杂钢结构局部壳体屈曲及铸钢节点受力分析[D]. 杭州:浙江大学建筑工程学院, 2007.
Zhang Da-ming. Analysis of local shell buckling and cast steel joint forces of complex steel structures[D]. Hangzhou:School of Civil Engineering and Architecture, Zhejiang University, 2007.
12 孙鹏,王元清,石永久. 考虑倒角系数的T型铸钢节点轴向承载力非线性分析[J]. 空间结构, 2006, 12(2): 39-43.
Sun Peng, Wang Yuan-qing, Shi Yong-jiu. Nonlinear analysis of axial bearing capacity of T-type cast steel joints considering chamfer coefficient[J]. Space Structure, 2006, 12(2): 39-43.
13 刘宇航. 基于BIM的悬索桥缆索系统参数化设计研究[D]. 成都:西南交通大学土木工程学院, 2019.
Liu Yu-hang. Research on parametric design of suspension bridge cable system based on BIM[D]. Chendu: School of Civil Engineering, Southwest Jiaotong University, 2019.
14 . 公路悬索桥设计规范[S].
15 . 公路桥涵设计通用规范[S].
[1] 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755.
[2] 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762.
[3] 高凯,刘纲. 全局临界强度分枝-约界法的有效强度改进[J]. 吉林大学学报(工学版), 2021, 51(2): 597-603.
[4] 宫亚峰,宋加祥,谭国金,毕海鹏,刘洋,单承新. 多车桥梁动态称重算法[J]. 吉林大学学报(工学版), 2021, 51(2): 583-596.
[5] 孔庆雯,谭国金,王龙林,王勇,魏志刚,刘寒冰. 基于有限元方法的裂缝箱梁桥自振特性分析[J]. 吉林大学学报(工学版), 2021, 51(1): 225-232.
[6] 陈华,陈耀嘉,谢斌,王鹏凯,邓朗妮. CFRP筋粘结式锚固体系界面失效演化机制及粘结强度计算[J]. 吉林大学学报(工学版), 2020, 50(5): 1698-1708.
[7] 宫亚峰,宋加祥,毕海鹏,谭国金,胡国海,林思远. 装配式箱涵结构缩尺模型静载试验及有限元分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1728-1738.
[8] 高昊,王君杰,刘慧杰,王剑明. 连续梁桥地震行为可控设计准则及实用装置[J]. 吉林大学学报(工学版), 2020, 50(5): 1718-1727.
[9] 蒲黔辉,刘静文,赵刚云,严猛,李晓斌. 高性能树脂混凝土加固混凝土偏压柱承载力理论分析[J]. 吉林大学学报(工学版), 2020, 50(2): 606-612.
[10] 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588.
[11] 王伯昕,杨海涛,王清,高欣,陈小旭. 基于补充改进集合经验模态分析法⁃多尺度排列熵分析桥梁振动信号优化滤波方法[J]. 吉林大学学报(工学版), 2020, 50(1): 216-226.
[12] 张淼,钱永久,张方,朱守芹. 基于增大截面法的混凝土加固石拱桥空间受力性能试验分析[J]. 吉林大学学报(工学版), 2020, 50(1): 210-215.
[13] 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报(工学版), 2019, 49(6): 1891-1899.
[14] 贾毅,赵人达,王永宝,李福海. 多跨长联连续梁桥粘滞阻尼器参数敏感性分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1871-1883.
[15] 钟春玲,梁东,张云龙,王静. 体外预应力加固简支梁自振频率计算[J]. 吉林大学学报(工学版), 2019, 49(6): 1884-1890.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!