吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1588-1597.doi: 10.13229/j.cnki.jdxbgxb20210143

• 交通运输工程·土木工程 • 上一篇    

高铁刚性桩筏地基的固结特性及影响因素

商拥辉1,2(),徐林荣1,3(),陈钊锋2   

  1. 1.中南大学 土木工程学院,长沙 410075
    2.黄淮学院 建筑工程学院,河南 驻马店 463000
    3.中南大学 高速铁路建造技术国家工程实验室,长沙 410075
  • 收稿日期:2021-02-21 出版日期:2022-07-01 发布日期:2022-08-08
  • 通讯作者: 徐林荣 E-mail:syhsrsci@sina.com;lrxu@csu.edu.com
  • 作者简介:商拥辉(1985-),男,讲师,在站博士后. 研究方向:特殊土路基动力特性.E-mail:syhsrsci@sina.com
  • 基金资助:
    国家自然科学基金项目(51778634);中国博士后科学基金项目(2020M682589);河南省科技攻关重点研发项目(202102310264);河南省教育厅重点研发项目(20B58003)

Consolidation characteristics and influencing factors of rigid pile-raft foundation of high-speed railway

Yong-hui SHANG1,2(),Lin-rong XU1,3(),Zhao-feng CHEN2   

  1. 1.School of Civil Engineering,Central South University,Changsha 410075,China
    2.Institute of Architecture and Engineering,Huanghuai University,Zhumadian 463000,China
    3.National Engineering Laboratory for High Speed Railway Construction,Central South University,Changsha 410075,China
  • Received:2021-02-21 Online:2022-07-01 Published:2022-08-08
  • Contact: Lin-rong XU E-mail:syhsrsci@sina.com;lrxu@csu.edu.com

摘要:

选取高铁常见PHC刚性桩-筏复合地基典型单元体,考虑刚性桩不排水客观特性,分别建立加固区与下卧层土体固结方程,并结合实例深层次揭示地基设计参数对固结特性的影响。研究结果表明:刚性桩-筏复合地基固结具有时变效应,填筑期主要受加固区固结速率影响,静置期主要受下卧层固结速率影响;置换率、相对加固深度和桩-土压缩模量比等设计参数对复合地基固结速率均有影响,临界范围分别为0.03~0.06、0.5~0.8和100~150;本文算法合理性得到验证,研究成果可为软土区高铁刚性桩-筏复合地基设计提供理论依据。

关键词: 高速铁路, 桩?筏复合地基, 固结特性, 影响因素

Abstract:

The typical unit of PHC rigid pile-raft composite foundation in high-speed railway is selected. Considering the undrained objective characteristics of rigid pile, the consolidation equations of soil in reinforcement area and underlying layer are established respectively, and the influence of foundation design parameters on consolidation characteristics is revealed in depth combining with examples. The results show that the consolidation of rigid pile-raft composite foundation has a time-varying effect. The filling period is mainly affected by the consolidation rate of the reinforcement area, and the resting period is mainly affected by the consolidation rate of the underlying layer. Design parameters such as replacement rate, relative reinforcement depth and pile-soil compression modulus ratio all have an impact on the consolidation rate of composite foundations, and the critical ranges are 0.03-0.06, 0.5-0.8 and 100-150, respectively. The rationality of the algorithm in this paper has been verified, and the research results can provide a theoretical basis for the design of rigid pile-raft composite foundations for high-speed railways in soft soil areas.

Key words: high speed railway, pile-raft composite foundation, consolidation characteristics, influencing factors

中图分类号: 

  • TU470

图1

计算简化模型图"

图2

受力分析简图"

图3

单元体渗流关系图"

图4

等效双层地基模型"

图5

附加应力随时间变化曲线"

图6

对比曲线"

图7

置换率对固结度的影响"

图8

加固深度对固结度的影响"

图9

桩-土压缩模量比影响"

图10

各层固结对比"

1 Jiang Guan-lu, Chen Weri-zi, Liu Xian-feng, et al. Field study on swelling-shrinkage response of an expansive soil foundation under high-speed railway embankment loads[J]. Soils and Foundations, 2018, 58(6):1538-1552.
2 Kong Ling-wei, Zeng Zhi-xiong, Bai Wei, et al. Engineering geological properties of weathered swelling mudstones and their effects on the landslides occurrence in the Yanji section of the Jilin-hunchun high-speed railway[J]. Bulletin of Engineering Geology and the Environment, 2017, 77(4): 1491-1503.
3 孔纲强, 孙广超, 刘汉龙, 等.不同激振频率下现浇X形桩桩-筏复合地基模型试验研究[J].岩土力学, 2017, 38(5): 1379-1384, 1396.
Sun Gang-qiang, Sun Guang-chao, Liu Han-long, et al. Experimental study of XCC pile-raft composite foundation under different excitation frequencies[J]. Rock and Soil Mechanics,2017,38(5): 1379-1384, 1396.
4 左珅, 王敏, 徐林荣, 等.高速铁路中低压缩性土桩-筏(网)地基加固效果研究[J].中南大学学报:自然科学版, 2014, 45(5): 1590-1597.
Zuo Shen, Wang Min, Xu Lin-rong, et al. Research on reinforce effect of high-speed railway low and medium compressible soil pile-raft (net) foundation[J]. Journal of Central South University(Science and Technology), 2014, 45(5):1590-1597.
5 陈洪运, 马建林, 陈红梅, 等.桩筏结构复合地基中筏板受力分析的理论计算模型与试验研究[J]. 岩土工程学报, 2014, 36(4):646-653.
Chen Hong-yun, Ma Jian-lin, Chen Hong-mei, et al. Theoretical and experimental studies on forces acting on raft of pile-raft composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4):646-653.
6 Wu Hui, Hu Li-ming, Wen Qing-bo. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters[J]. Computers and Geosciences, 2017, 103(6): 92-98.
7 张峰, 刘莹, 许兆义, 等.武广高铁CFG桩复合地基工后沉降影响因素[J].西南交通大学学报, 2015, 50(5):783-788.
Zhang Feng, Liu Ying, Xu Zhao-yi, et al. Factors influencing subgrade post-construction settlement of CFG pile composite foundation in Wuhan-Guangzhou high-speed railway[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 783-788.
8 蔡雨, 徐林荣, 钟启荣, 等.基于蛛网结构相似的高速公路软基处理决策模型[J].控制与决策, 2020, 35(2):445-452.
Cai Yu, Xu Lin-rong, Zhong Qi-rong, et al. Decision-making model of highway soft foundation processing based on similar spider web structure[J]. Control and Decision, 2020, 35(2): 445-452.
9 马明正, 海振雄, 叶阳升, 等. 高速铁路CFG桩复合地基沉降计算适用方法研究[J]. 中国铁道科学,2014(2): 7-13.
Ma Ming-zheng, Zhen-xiong Hai, Ye Yang-sheng, et al. Applicable method for settlement calculation of CFG pile composite foundation for high-speed railway[J]. China Railway Science, 2014(2): 7-13.
10 Wang Peng, Han Yan-bing, Zhou Yang, et al. Apparent clogging effect in vacuum-induced consolidation of dredged soil with prefabricated vertical drains[J]. Geotextiles and Geomembranes, 2020, 48(4): 524-531.
11 徐林荣, 陈昀灏, 曹德洪, 等. 变长桩-板结构应用在软土地区路-涵过渡段试验[J]. 长安大学学报:自然科学版, 2021,41(3): 1-11.
Xu Lin-rong, Chen Jun-hao, Chao De-hong, et al. Experimental on application of variable length pile-plate structure in road-culvert transition section in soft soil area[J]. Journal of Chang'an University(Natural Science Edition),2021,41(3): 1-11.
12 Xie Kang-he, Lu Meng-meng, Liu Ggan-bin. Equal strain consolidation for stone column reinforced foundation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2009, 33: 1721-1735.
13 陈征, 张峰, 陈益峰,等.排水通道分布式布设下双层地基平面应变固结分析[J].工程力学,2020,37(1):135-144.
Chen Zheng, Zhang Feng, Chen Yi-feng, et al. Plane-strail consolidation analysis of double-layered ground with strip-shaped distributed drainage boundary[J]. Engineering Mechanics,2020,37(1):135-144.
14 赵明华, 何腊平, 张玲.基于荷载传递法的CFG桩复合地基沉降计算[J]. 岩土力学, 2010(3):839-844.
Zhao Ming-hua, He La-ping, Zhang Ling. Settlement calculation of CFG pile composite foundation based on load transfer method[J]. Rock and Soil Mechanics, 2010(3):839-844.
15 高俊, 党发宁, 丁九龙,等.考虑初始固结状态影响的软基固结计算方法研究[J].岩石力学与工程学报,2019,38(): 3189-3196.
Gao Jun, Dang Fa-ning, Ding Jiu-long, et al. Study on calculation method of soft foundation consolidation considering the effect of initial consolidation state[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(Sup.1): 3189-3196.
16 陈昌富, 周志军, 龚晓南.带褥垫层桩体复合地基沉降计算改进弹塑性分析法[J]. 岩土工程学报,2008(8):1171-1177.
Chen Chang-fu, Zhou Zhi-jun, Gong Xiao-nan. Settlement of pile-soil composite foundation with cushion calculated by modified elasto-plastic analysis method[J]. Chinese Journal of Geotechnical Engineering, 2008(8):1171-1177.
17 刘俊飞, 赵国堂, 马建林.桩筏复合地基负摩阻段分析及桩土应力比计算[J].铁道学报, 2011, 33(7):98-103.
Liu Jun-fei, Zhao Guo-tang, Ma Jian-lin. Analysis on negative friction segment of pile-raft composite foundation and calculation of its pile-soil stress ratio[J]. Journal of the China Railway Society,2011,33(7):98-103.
18 Schiffman R L, Stein J R. One-dimensional consolidation of layered systems[J]. ASCE:JSMFD, 1970, 96(4): 1499-1504.
19 谢康和, 潘秋元.变荷载下任意层地基一维固结理论[J]. 岩土工程学报, 1995(5): 80-85.
Xie Kang-he, Pan Qiu-yuan. One-dimensional consolidation theory of any floor foundation under variable loads[J]. Chinese Journal of Geotechnical Engineering, 1995(5):80-85.
20 Miao L C, Wang X H, Kavazanjian E. Consolidation of a double-layered compressible foundation partially penetrated by deep mixed columns[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 3(8): 1210-1214.
[1] 王海晓,李永翔,丁旭,张宝华. 基于边缘智能的城市下穿隧道车辆行车安全预测[J]. 吉林大学学报(工学版), 2022, 52(6): 1337-1343.
[2] 李明,王浩然,赵唯坚. 单向带抗剪键叠合板的受力性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 654-667.
[3] 彭勇,高华,万蕾,刘贵应. 沥青混合料劈裂强度影响因素数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1521-1530.
[4] 江亮,贺宜. 电动两轮车风险驾驶行为及事故影响因素分析[J]. 吉林大学学报(工学版), 2019, 49(4): 1107-1113.
[5] 王京, 王殿海, 曲昭伟. 适应长春-吉林高速铁路建设的公路诱增客流量预测方法[J]. 吉林大学学报(工学版), 2010, 40(06): 1518-1522.
[6] 陆学元, 孙立军. AC-13改性沥青混合料劈裂强度的影响因素及其与马歇尔性能指标的相关性[J]. 吉林大学学报(工学版), 2010, 40(03): 676-0682.
[7] 周竹萍,任刚,王炜. 基于多级递阶层次结构模型的交通方式分担预测[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 116-0120.
[8] 王云鹏, 隗海林, 佟金, 段秋实, 任露泉. 水泥混凝土粘附界面的影响因素[J]. 吉林大学学报(工学版), 2003, (1): 56-59.
[9] 蔡莉, 孙海忠. 信息技术对企业组织效率的作用机理[J]. 吉林大学学报(工学版), 2002, (3): 86-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!