吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 2852-2863.doi: 10.13229/j.cnki.jdxbgxb20210457

• 交通运输工程·土木工程 • 上一篇    下一篇

自动驾驶汽车双车道换道最优轨迹规划方法

彭浩楠1(),唐明环1,查奇文1,王伟忠1(),王伟达2,项昌乐2,刘玉龙3   

  1. 1.中国工业互联网研究院,北京 100102
    2.北京理工大学 机械与车辆学院,北京 100081
    3.清华大学 车辆与运载学院,北京 100084
  • 收稿日期:2021-05-23 出版日期:2022-12-01 发布日期:2022-12-08
  • 通讯作者: 王伟忠 E-mail:penghaonanteddy@126.com;wangweizhong@china-aii.com
  • 作者简介:彭浩楠(1994-),男,博士研究生. 研究方向:智能网联汽车规控,车联网安全. E-mail:penghaonanteddy@126.com
  • 基金资助:
    国家自然科学基金项目(51575043)

Optimization⁃based lane changing trajectory planning approach for autonomous vehicles on two⁃lane road

Hao-nan PENG1(),Ming-huan TANG1,Qi-wen ZHA1,Wei-zhong WANG1(),Wei-da WANG2,Chang-le XIANG2,Yu-long LIU3   

  1. 1.China Academy of Industrial Internet,Beijing 100102,China
    2.School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China
    3.School of Vehicle and Mobility,Tsinghua University,Beijing 100084,China
  • Received:2021-05-23 Online:2022-12-01 Published:2022-12-08
  • Contact: Wei-zhong WANG E-mail:penghaonanteddy@126.com;wangweizhong@china-aii.com

摘要:

针对双车道公路交通场景,提出了自动驾驶汽车换道的决策和轨迹规划方法。首先,设计了基于贝叶斯概率理论的风险评估方法,得到当前场景车道安全性条件概率。然后,设计了基于安全效用的行为决策方法,根据风险评估贝叶斯网络和决策图做出此时的行为决策——车道保持或换道。在轨迹规划层提出了基于非线性模型预测控制(MPC)的轨迹规划方法,模仿优秀驾驶员给定各个优化目标函数的权重系数,求解最优期望换道轨迹。最后,通过仿真验证该决策和轨迹规划方法的有效性,结果表明,在不同风险场景中,所设计的风险评估、行为决策和轨迹规划方法能够使自动驾驶汽车做出安全的行为决策,并规划出最优的换道轨迹坐标和车速,使自动驾驶汽车安全、快速地换道行驶。

关键词: 自动驾驶汽车, 换道风险评估, 行为决策, 轨迹规划, 非线性模型预测控制

Abstract:

For two lane traffic scenarios, a decision-making and optimization-based lane changing trajectory planning method for autonomous vehicles was proposed. Firstly, a risk assessment method based on the Bayesian probability theory was designed to obtain the conditional probability of the lane safety in the current scenario; then, a behavior decision-making method based on the safety utility was designed. According to the risk assessment Bayesian network and decision graph, the behavior decision of lane keeping or lane changing was made. An optimization-based trajectory planning method based on the nonlinear MPC was proposed at the trajectory planning layer, which imitates the excellent driver to give the weight coefficient of each optimized objective function to solve the optimal desired lane changing trajectory. At last,The effectiveness of the decision-making and trajectory planning method was verified by the simulation. The simulation results show that the risk assessment, behavior decision-making and optimization-based trajectory planning method can make the safe behavior decision and plan the optimal lane changing trajectory for autonomous vehicles in different risk scenarios, so that the autonomous vehicle can change the lane safely and quickly.

Key words: autonomous vehicles, lane changing risk assessment, decision making, trajectory planning, nonlinear model predictive control (MPC)

中图分类号: 

  • U461.1

图1

自动驾驶汽车所处双车道交通场景示意图"

图2

本文整体架构图"

图3

风险评估与行为决策贝叶斯流程图"

图4

自车运动学预测模型示意图"

图5

自车安全不等式区域示意图"

表1

优秀驾驶员面对不同风险场景的优化目标函数权重系数变化规律"

权重系数场景类别
低风险场景高风险场景
目标横向位置减小增大

防撞安全距离

纵向巡航速度

控制输入及其导数

高阶动力学特性

不变

减小

增大

增大

不变

增大

减小

减小

图6

一般风险场景自动驾驶汽车期望轨迹和周车轨迹图"

图7

一般风险场景自动驾驶汽车期望车速和周车车速图"

图8

一般风险场景自动驾驶汽车期望加速度图"

图9

一般风险场景自车期望航向角"

图10

一般风险场景自车期望前轮转角"

图11

高风险场景自动驾驶汽车期望轨迹和周车轨迹图"

图12

高风险场景自动驾驶汽车期望车速和周车车速图"

图13

高风险场景自动驾驶汽车期望加速度图"

图14

高风险场景自车期望航向角"

图15

高风险场景自车期望前轮转角"

1 Peng Hao-nan, Wang Wei-da, An Quan, et al. Path tracking and direct yaw moment coordinated control based on robust MPC with the finite time horizon for autonomous independent-drive vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6053-6066.
2 Xiang Chang-le, Peng Hao-nan, Wang Wei-da, et al. Path tracking coordinated control strategy for autonomous four in-wheel-motor independent-drive vehicles with consideration of lateral stability[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(4): 1023-1036.
3 Sun L, Cheng P, Tomizuka M, et al. A Fast integrated planning and control framework for autonomous driving via imitation learning[C]∥Proceedings of the ASME 2018 Dynamic Systems and Control Conference, Atlanta, Georgia, USA, 2018: 1-11.
4 Noh S. Decision-making framework for autonomous driving at road intersections: safeguarding against collision, overly conservative behavior, and violation vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3275-3286.
5 宋威龙. 城区动态环境下智能车辆行为决策研究[D]. 北京:北京理工大学机械与车辆学院, 2016.
Song Wei-long. Research on behavioral decision making for intelligent vehicles in dynamic urban environments[D]. Beijing: School of Mechanical Engineering, Beijing Institute of Technology, 2016.
6 何祥坤. 自动驾驶汽车紧急避撞系统的运动控制与决策方法研究[D]. 北京:清华大学车辆与运载学院, 2018.
He Xiang-kun, Research on motion control and decision-making method of emergency collision avoidance system for autonomous vehicle[D]. Beijing: School of Vehicle and Mobility, Tsinghua University, 2018.
7 Furda A, Vlacic L. Enabling safe autonomous driving in real-world city traffic using multiple criteria decision making[J]. IEEE Intelligent Transportation Systems Magazine, 2011, 3(1): 4-17.
8 Huang Z, Xu X, He H, et al. Parameterized batch reinforcement learning for longitudinal control of autonomous land vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(4): 730-741.
9 王娟, 朱庆保, 崔靖. 复杂环境下基于贝叶斯决策的机器人路径规划[J]. 计算机工程与应用, 2012, 48(2): 245-248.
Wang Juan, Zhu Qing-bao, Cui Jing. Robot path planning based on Bayes decision in complex environment[J]. Computer Engineering and Application, 2012, 48(2): 245-248.
10 赵志成,华一丁,王文扬,等. 智能车辆驾驶行为决策方法研究[J]. 现代信息科技, 2019, 3(24): 191-193.
Zhao Zhi-cheng, Hua Yi-ding, Wang Wen-yang, et al. Research on intelligent vehicle driving behavior decision-making method[J]. Modern Information Technology, 2019, 3(24): 191-193.
11 Zong X, Xu G, Yu G, et al. Obstacle avoidance for self-driving vehicle with reinforcement learning[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2017, 11(1): 28-37.
12 惠飞, 穆柯楠, 赵祥模. 基于动态概率网格和贝叶斯决策网络的车辆变道辅助驾驶决策方法[J]. 交通运输工程学报, 2018, 18(2): 148-158.
Hui Fei, Mu Ke-nan, Zhao Xiang-mo. Assistant driving decision method of vehicle lane change based on dynamic probability grid and Bayesian decision network[J]. Journal of Transportation Engineering, 2018, 18(2): 148-158.
13 孙浩, 邓伟文, 张素民, 等. 考虑全局最优性的汽车微观动态轨迹规划[J]. 吉林大学学报:工学版, 2014, 44(4): 918-924.
Sun Hao, Deng Wei-wen, Zhang Su-min, et al. Micro vehicle dynamic trajectory plan with global optimality[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(4): 918-924.
14 边明远. 基于紧急变道策略的汽车主动避障安全车距模型[J]. 重庆理工大学学报:自然科学, 2012, 26(4): 1-4.
Bian Ming-yuan. A vehicle safety distance model for collision avoidance system based on emergency lane change motion[J]. Journal of Chongqing University of Technology(Natural Science), 2012, 26(4): 1-4.
15 Ardakani M K, Tavana M. A decremental approach with the A* algorithm for speeding-up the optimization process in dynamic shortest path problems[J]. Measurement, 2015, 60: 299-307.
16 Kuwata Y, Teo J, Fiore G, et al. Real-time motion planning with applications to autonomous urban driving[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1105-1118.
17 Madås D, Nosratinia M, Keshavarz M, et al. On path planning methods for automotive collision avoidance[C]∥2013 IEEE Intelligent Vehicles Symposium, Gold Coast City, QLD, Australia, 2013: 931-937.
18 Ali M, Gray A, Gao Y, et al. Multi-objective collision avoidance[C]∥ASME 2013 Dynamic Systems and Control Conference, Palo Alto, California, USA, 2013: No. V003T47A004.
19 Ji J, Khajepour A, Melek W W, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints[J]. IEEE Transactions on Vehicular Technology, 2016, 66(2): 952-964.
20 Dixit S, Montanaro U, Dianati M,et al. Trajectory planning for autonomous high-speed overtaking in structured environments using robust MPC[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 2310-2323.
21 Rajamani R. Vehicle Dynamics and Control[M]. Berlin: Springer Science & Business Media, 2011.
[1] 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043.
[2] 张玮,张树培,罗崇恩,张生,王国林. 智能汽车紧急工况避撞轨迹规划[J]. 吉林大学学报(工学版), 2022, 52(7): 1515-1523.
[3] 鲜斌,张诗婧,韩晓薇,蔡佳明,王岭. 基于强化学习的无人机吊挂负载系统轨迹规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2259-2267.
[4] 贾超,徐洪泽,王龙生. 基于多质点模型的列车自动驾驶非线性模型预测控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1913-1922.
[5] 张琳, 章新杰, 郭孔辉, 王超, 刘洋, 刘涛. 未知环境下智能汽车轨迹规划滚动窗口优化[J]. 吉林大学学报(工学版), 2018, 48(3): 652-660.
[6] 曲兴田, 闫龙威, 孙慧超, 周伟, 李光辉. 工作平台可翻转的3D打印机装置结构分析[J]. 吉林大学学报(工学版), 2017, 47(5): 1489-1497.
[7] 曹福成, 邢笑雪, 李元春, 赵希禄. 下肢康复机器人轨迹自适应滑模阻抗控制[J]. 吉林大学学报(工学版), 2016, 46(5): 1602-1608.
[8] 管成,王飞,张登雨. 基于NURBS的挖掘机器人时间最优轨迹规划[J]. 吉林大学学报(工学版), 2015, 45(2): 540-546.
[9] 缪东晶,吴聊,徐静,陈恳,谢颖,刘志. 飞机表面自动喷涂机器人系统与喷涂作业规划[J]. 吉林大学学报(工学版), 2015, 45(2): 547-553.
[10] 孙浩, 邓伟文, 张素民, 吴梦勋. 考虑全局最优性的汽车微观动态轨迹规划[J]. 吉林大学学报(工学版), 2014, 44(4): 918-924.
[11] 石屹然, 田彦涛, 史红伟, 张立. 基于Modified Volterra模型的SI发动机空燃比非线性模型预测控制[J]. 吉林大学学报(工学版), 2014, 44(2): 538-547.
[12] 任园园, 李显生, 席建锋. 驾驶行为决策风险的多维结构模型[J]. 吉林大学学报(工学版), 2011, 41(02): 343-0348.
[13] 于树友, 陈虹, 赵海艳. 非线性离散时间系统的准无限时域NMPC[J]. 吉林大学学报(工学版), 2009, 39(04): 1002-1006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 胡宗杰,吴志军,高光海,李理光 . 油束热碰壁制备柴油均质预混合气的优化[J]. 吉林大学学报(工学版), 2007, 37(01): 79 -84 .
[2] 王庆年,郑君峰,王伟华 . 一种新的并联混合动力客车的自适应控制策略[J]. 吉林大学学报(工学版), 2008, 38(02): 249 -0253 .
[3] 董伟,于秀敏,张友坤 . 汽车下长坡时发动机制动CVT控制策略
[J]. 吉林大学学报(工学版), 2006, 36(05): 650 -0653 .
[4] 李自立,陈增强,袁著祉 . 含状态项积分的时滞非线性系统鲁棒控制[J]. 吉林大学学报(工学版), 2007, 37(06): 1392 -1396 .
[5] 董婧;赵晓晖;应娜. 基于二进小波变换的基音检测算法[J]. 吉林大学学报(工学版), 2006, 36(06): 978 -0982 .
[6] 何仁, 陈庆樟. 用双开关磁阻电机的汽车能量再生制动技术[J]. 吉林大学学报(工学版), 2009, 39(05): 1137 -1141 .
[7] 李所军,高海波,邓宗全. 为月球车低能耗越障的摇臂悬架参数多目标优化[J]. 吉林大学学报(工学版), 2010, 40(03): 729 -0734 .
[8] 杨忠振,崔丛 . 基于神经网络的道路交通污染物浓度预测[J]. 吉林大学学报(工学版), 2007, 37(03): 705 -0708 .
[9] 姜辉, 郭孔辉, 张建伟. 基于路径规划的自动平行泊车转向控制器[J]. 吉林大学学报(工学版), 2011, 41(02): 293 -0297 .
[10] 孟令启,杜勇,马生彪,郭斌 . 中厚板轧机垂直振动的非线性[J]. 吉林大学学报(工学版), 2009, 39(03): 712 -0715 .