吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 538-547.doi: 10.13229/j.cnki.jdxbgxb201402041

• 论文 • 上一篇    下一篇

基于Modified Volterra模型的SI发动机空燃比非线性模型预测控制

石屹然1, 田彦涛1, 史红伟2, 张立3   

  1. 1. 吉林大学 通信工程学院, 长春 130012;
    2. 长春工业大学 电气与电子工程学院, 长春 130012;
    3. 吉林大学 珠海学院, 广东 珠海 519041
  • 收稿日期:2013-07-27 出版日期:2014-02-01 发布日期:2014-02-01
  • 通讯作者: 张立(1966- ),男,教授.研究方向:自动控制及故障诊断.E-mail:lzhzip@126.com E-mail:lzhzip@126.com
  • 作者简介:石屹然(1984- ),男,博士研究生.研究方向:控制理论与控制工程.E-mail:35105767@qq.com
  • 基金资助:

    国家电动车重大科技专项课题(JS-102);国家自然科学基金重点项目(51075175).

Modified Volterra model based nonlinear model predicting control for air-fuel ratio of SI engines

SHI Yi-ran1, TIAN Yan-tao1, SHI Hong-wei2, ZHANG Li3   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130022, China;
    2. College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China;
    3. College of Zhuhai, Jilin University, Zhuhai 519041, China
  • Received:2013-07-27 Online:2014-02-01 Published:2014-02-01

摘要:

针对SI发动机空燃比(Air-fuel ratio,AFR)控制的问题,首先对标准Volterra模型进行了改进,提出了一种变采样间隔的多输入多输出Modified Volterra模型。并应用该模型实现了发动机AFR系统的在线自适应辨识。并在此基础上,提出了一种基于Modified Volterra模型的非线性模型预测控制方法。利用Matlab对一种业内普遍认可的基准发动机模型进行了仿真实验,并与当前汽车广泛使用的PI控制器算法进行了对比。仿真实验结果证明了本文方法的有效性。

关键词: 自动控制技术, Volterra, 非线性模型预测控制, 空燃比, SI发动机, 自适应辨识

Abstract:

The control of the Air-Fuel Ratio (AFR) for SI engines is investigated. First, the traditional Volterra model is improved, and a modified multi-input multi-output Volterra model with variable sampling intervals is proposed. This model is employed to achieve engine AFR adaptive modeling online. Then, on this basis, a nonlinear model predicting control method based on the modified Volterra model is developed. Finally, using Matlab, simulation of the proposed control model is carried out with a widely accepted SI engine benchmark, and compared with the currently used PI controller algorithm. The results show that the proposed method is effective.

Key words: automatic control technology, Volterra, nonlinear model predictive control, air-fuel ratio, SI engine, adaptive modeling

中图分类号: 

  • TK411

[1] Manzie C, Palaniswami M, Watson H. Gaussian networks for fuel injection control[J]. Journal of Automobile Engineering, 2001, 215(10): 1053-1068.



[2] Manzie C, Palaniswami M, Ralph D, et al. Model predictive control of a fuel injection system with a radial basis function network observer[J]. Journal of Dynamic Systems Measurement and Control, Transactions of the ASME, 2002, 124(4): 648-658.



[3] Balluchi A, Benvenuti L, Di Benedetto, et al. Automotive engine control and hybrid systems: challenges and opportunities[J].Proceedings of the IEEE, 2000, 88(7): 888-912.



[4] Nicolao De, Scattolini G, Siviero R, et al. Modelling the volumetric efficiency of IC engines: parametric, non-parametric and neural techniques[J]. Control Engineering Practice, 1996, 4(10):1405-1415.



[5] Tan Y, Mehrdad S. Neural-networks-based nonlinear dynamic modeling for automotive engines[J]. Neurocomputing, 2000, 30: 129-142.



[6] Vinsonneau J A F, Shields D N, King P J, et al. Polynomial and neural network spark ignition engine intake manifold modeling[C]//Proceedings of the Sixteenth International Conference on Systems Engineering, 2003, 2:718-723.



[7] Choi S B, Hendrick J K. An observer-based controller design method for improving air/fuel characteristics of spark ignition engines[C]//IEEE Trans on Control Systems Technology, 1998, 6(3): 325-334.



[8] Yoon R, Sunwoo M. An adaptive sliding mode controller for airfuel ratio control of spark ignition engines[J]. Journal of Automobile Engineering, 2001. 215(2): 305-315.



[9] Wang S W, Yu D L, Gomm J B, et al. Adaptive neural network model based predictive control for air-fuel ratio of SI engines[J]. Engineering Application of Artificial Intelligence, 2006, 19(2):189-200.



[10] Wang S W, Yu D L, Gomm J B, et al. Adaptive neural network model based predictive control of an internal combustion engine with a new optimization algorithm[J]. Journal of Automobile Engineering, 2006, 220(2):195-208.



[11] Rojas F, Rojas I, Clemente R, et al. Nonlinear blind source separation using genetic algorithm[C]//Proc of Independent Component Analysis and Signal Separation, USA, 2001: 400-405.



[12] Tan Y, Wang J. Nonlinear blind source separation using higher order statistics and a Genetic algorithm[J]. IEEE Transactions on Evolutionary Computation, 2001, 5(6): 600-612.



[13] Bryon R Maner, Francis J Doyle Ⅲ, Babatunde A, et al. Ogunnaike nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models[J]. Automatica, 1996, 32(9):1285-1301.



[14] Gruber J K, Oliva C B A. Nonlinear MPC for the airflow in a PEM fuel cell using a Volterra series model[J]. Control Engineering Practice, 2012, 20:205-217.



[15] Gruber J K, Rodríguez J L G, Bordons F C M, et al.Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation[J]. Control Engineering Practice, 2011, 19: 354-366.



[16] Hendricks E. A generic mean value engine model for spark ignition engines[C]//Proceedings of 41st Simulation Conference, DTU, Lyngby, Denmark, 2000.



[17] Ljung L. System Identification-Theory for the User[M]. Second Edition. Englewood Cliffs(NJ):Prentice-Hall, 1999:361-369.



[18] Doyle F J, Pearson R K, Ogunnaike B A. Identification and Control Using Volterra Models[M]. London: Springer, 2001.

[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!