吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2339-2349.doi: 10.13229/j.cnki.jdxbgxb.20211151

• 交通运输工程·土木工程 • 上一篇    

考虑温度效应的冻结膨胀土统计损伤模型

李新宇1,2,3(),凌贤长1,2,3(),曲娜1   

  1. 1.哈尔滨工业大学 土木工程学院,哈尔滨 150090
    2.哈尔滨工业大学 重庆研究院,重庆 401135
    3.哈尔滨工业大学 黑龙江省寒区轨道交通工程技术研究中心,哈尔滨 150090
  • 收稿日期:2021-11-02 出版日期:2023-08-01 发布日期:2023-08-21
  • 通讯作者: 凌贤长 E-mail:18B933025@stu.hit.edu.cn;lingxianzhang@hit.edu.cn
  • 作者简介:李新宇(1991-),女,博士研究生.研究方向:寒区冻土工程和特殊岩土工程.E-mail:18B933025@stu.hit.edu.cn
  • 基金资助:
    国家自然科学基金项目(42101125);中国博士后科学基金面上项目(2021M690840)

Statistical damage model of frozen expansive soil considering temperature effect

Xin-yu LI1,2,3(),Xian-zhang LING1,2,3(),Na QU1   

  1. 1.School of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China
    2.Chongqing Research Institute,Harbin Institute of Technology,Chongqing 401135,China
    3.Heilongjiang Research Center for Rail Transit Engineering in Cold Regions,Harbin Institute of Technology,Harbin 150090,China
  • Received:2021-11-02 Online:2023-08-01 Published:2023-08-21
  • Contact: Xian-zhang LING E-mail:18B933025@stu.hit.edu.cn;lingxianzhang@hit.edu.cn

摘要:

为研究高寒深季节冻土区膨胀土的低温力学特性,开展考虑试验温度、含水率和冻融循环次数影响的低围压固结不排水剪切试验。结果表明:温度和含水率的降低均会使冻结膨胀土的偏应力-轴应变曲线类型由硬化型逐渐向软化型改变;冻融循环作用会加剧软化效应,同时促进围压对试样的敏感度;试验温度在已冻结区温度范围内时冻结膨胀土剪切过程可依次分为4个阶段:弹性阶段、塑性剪缩阶段、塑性剪胀阶段和破坏阶段;冻结膨胀土的弹性模量随试验温度的降低而线性增大。建立了考虑温度影响的低温冻结膨胀土统计损伤模型,揭示了冻结膨胀土宏观力学特性劣化规律。

关键词: 冻结膨胀土, 弹性模量, 应力-应变关系, 损伤阈值, 统计损伤模型

Abstract:

In order to study the low temperature mechanical properties of expansive soil in the alpine deep seasonal permafrost region, the consolidation undrained shear tests under low confining pressure in different freezing temperatures, moisture content and freeze-thaw cycles were carried out. The results show that the stress-strain curves of the frozen expansive soil change from hardening to softening with the decrease of freezing temperature and initial water content. The effect of freeze-thaw cycles intensifies the softening effect and promotes the sensitivity of confining pressure. When the freezing temperature is within the frozen zone, the shear process of frozen expansive soil can be divided into four stages with the increase of axial strain: elastic stage, plastic shear shrinkage stage, plastic dilatancy stage and failure stage. The elastic modulus of frozen expansive soil increases with decreasing temperature and presents a good linear correlation. The statistical damage model of frozen expansive soil considering the influence of temperature was deduced, and the law of macroscopic mechanical properties deterioration of frozen expansive soil was revealed.

Key words: frozen expansive soil, elastic modulus, stress-strain relation, damage threshold, statistical damage model

中图分类号: 

  • TU443

表1

三轴试验方案"

试样编号试验温度/℃含水率/%冻融循环次数围压/kPa
1#-121030
2#-421030
3#-721030
4#-1021030
5#-121045
6#-421045
7#-721045
8#-1021045
9#-121060
10#-421060
11#-721060
12#-1021060
13#-418045
14#-424045
15#-4211030
16#-4211045
17#-4211060
18#2021030
19#2021060
20#2021090
21#-4210150
22#-4210250

图1

不同试验温度条件下试样偏应力-轴应变关系曲线"

图2

试验结束后试样裂缝发展情况"

图3

不同初始含水率下试样偏应力-轴应变关系曲线"

图4

不同冻融循环次数下试样偏应力-轴应变关系曲线"

图5

不同温度下试样体应变-轴应变关系曲线"

图6

不同温度下试样应力和体变与轴应变关系曲线"

图7

膨胀土试验温度-弹性模量关系曲线"

图8

不同工况下损伤变量值"

图9

冻土典型应力-应变曲线"

表2

冻结膨胀土统计损伤模型参数"

温度/℃围压/kPaαmF0
-4300.190.431048.36
450.531577.71
600.431313.84
-7300.190.36686.85
450.391002.69
600.401162.08
-10300.200.33817.41
450.35993.12
600.33890.87

图10

各种工况下三轴试验值与模型预测值对比图"

图11

两种预测模型对比图"

1 Luo J, Tang L, Ling X Z, et al. Experimental and analytical investigation on frost heave characteristics of an unsaturated moderately expansive clay[J]. Cold Regions Science and Technology, 2018, 155:343-353.
2 孔令伟, 周葆春, 白颢, 等. 荆门非饱和膨胀土的变形与强度特性试验研究[J]. 岩土力学, 2010, 31(10):3036-3042.
Kong Ling-wei, Zhou Bao-chun, Bai Hao, et al. Experimental study of deformation and strength characteristics of Jingmen unsaturated expansive soil[J]. Rock and Soil Mechanics, 2010, 31(10): 3036-3042.
3 卢再华, 陈正汉, 蒲毅彬. 膨胀土干湿循环胀缩裂隙演化的CT试验研究[J]. 岩土力学, 2002, 23(4):417-422.
Lu Zai-hua, Chen Zheng-han, Pu Yi-bin. A CT study on the crack evolution of expansive soil during drying and wetting cycles[J]. Rock and Soil Mechanics, 2002, 23(4): 417-422.
4 蔡正银, 朱洵, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报, 2019, 41(1):1381-1389.
Cai Zheng-yin, Zhu Xun, Huang Ying-hao, et al. Evolution rules of fissures in expansive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Geotecnial Engineering, 2019, 41(1): 1381-1389.
5 蔡正银, 朱洵, 黄英豪, 等. 冻融过程对膨胀土裂隙演化特征的影响[J]. 岩土力学, 2019, 40(9): 4555-4563.
Cai Zheng-yin, Zhu Xun, Huang Ying-hao, et al. Influences of freeze-thaw process on evolution characteristics of fissures in expansive soils[J]. Rock and Soil Mechanics, 2019, 40(9): 4555-4563.
6 韩春鹏,田家忆,张建,等. 干湿循环下纤维加筋膨胀土裂隙特性分析[J].吉林大学学报:工学版, 2019, 49(2): 392-400.
Han Chun-peng, Tian Jia-yi, Zhang Jian, et al. Analysis of crack characteristics of fiber-reinforced expansive soil under wetting-drying cycle[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 392-400.
7 Tang L, Cong S Y, Geng L, et al. The effect of freeze-thaw cycling on the mechanical properties of expansive soils[J]. Cold Regions Science and Technology, 2018, 145: 197-207.
8 Lu Y, Liu S H. Cracking in an expansive soil under freeze-thaw cycles[J]. Sciences in Cold and Arid Regions, 2017, 9(4): 392-397.
9 徐永福, 陈永战, 刘松玉, 等. 非饱和膨胀土的三轴试验研究[J]. 岩土工程学报, 1998, 20(3):14-18.
Xu Yong-fu, Chen Yong-zhan, Liu Song-yu, et al. Triaxial text on unsaturated expansive soils[J]. Chinese Journal of Geotecnial Engineering, 1998, 20(3): 14-18.
10 徐永福. 对“非饱和膨胀土的三轴试验研究”讨论的答复[J]. 岩土工程学报, 1998, 20(6):128-129.
Xu Yong-fu. Response to discussion on “Triaxial text on unsaturated expansive soils”[J]. Chinese Journal of Geotecnial Engineering, 1998, 20(6): 128-129.
11 蒋明镜, 本乡隆夫. 对“非饱和膨胀土的三轴试验研究”的讨论[J]. 岩土工程学报, 1998, 20(6):128.
Jiang Ming-jing, Takao Own. Discussion on “Triaxial text on unsaturated expansive soils”[J]. Chinese Journal of Geotecnial Engineering, 1998, 20(6): 128.
12 韩华强, 陈生水, 郑澄锋. 非饱和膨胀土强度及变形特性试验研究[J]. 岩土工程学报, 2008, 30(12):1872-1876.
Han Hua-qiang, Chen Sheng-shui, Zheng Chengfeng. Experimental study on strength and deformation of unsaturated expansive soils[J]. Chinese Journal of Geotecnial Engineering, 2008, 30(12): 1872-1876.
13 李兆宇, 张滨. 冻结膨胀土应力-应变关系试验研究[J]. 冰川冻土, 2014, 36(4): 902-906.
Li Zhao-yu, Zhang Bin. Experimental study of stress-stain relationships of frozen expansive soil[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 902-906.
14 许雷, 薛洋, 鲁洋, 等. 不同冻结温度条件下膨胀土冻融循环试验[J]. 水资源与水工程学报, 2016, 27(5):189-193.
Xu Lei, Xue Yang, Lu Yang, et al. Test of freeze-thaw cycle of expansive soil under condition of different freezing temperatures[J]. Journal of Water Resources & Water Engineering, 2016, 27(5): 189-193.
15 张勇敢, 鲁洋, 刘斯宏, 等. 基于巴西劈裂试验的冻结膨胀土拉伸特性研究[J]. 岩土工程学报,2021,43(11):2046-2054.
Zhang Yong-gan, Lu Yang, Liu Si-hong, et al. Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests[J]. Chineae Journal of Geotechnical Engineering,2021, 43(11):2046-2054.
16 卢再华, 陈正汉, 蒲毅彬. 原状膨胀土剪切损伤演化的定量分析[J]. 岩石力学与工程学报, 2004, 23(9):1428-1432.
Lu Zai-hua, Chen Zheng-han, Pu Yi-bin. Quantitative analysis on damage evolution of intact expansive soil during triaxial shearing test[J]. Chineese Journal of Rock Mechanics and Engineering, 2004, 23(9):1428-1432.
17 程明书, 汪时机, 张雅倩, 等. 膨胀土损伤变量不同表征方法评价的试验研究[J]. 岩土力学, 2015, 36(10):2892-2898.
Cheng Ming-shu, Wang Shi-ji, Zhang Ya-qian, et al. Experimental study of assessment of different characterization methods of expansive soil damage[J]. Rock and Soil Mechanics, 2015, 36(10): 2892-2898.
18 杨明辉, 孙龙, 赵明华, 等. 基于统计损伤理论的非饱和土简易本构模型[J]. 水文地质工程地质, 2015, 42(3):43-48, 58.
Yang Ming-hui, Sun Long, Zhao Ming-hua, et al. A simplified unsaturated soil constitutive model based on statistical damage theory[J]. Hydrogeology & Engineering Geology, 2015, 42(3):43-48, 58.
19 李向东, 罗晓辉. 非饱和土损伤模型与应用[J]. 岩土力学, 2009, 30():114-118.
Li Xiang-dong, Luo Xiao-hui. Damage model of unsaturated soil and its application[J]. Rock and Soil Mechanics, 2009, 30(Sup.2):114-118.
20 Tang L, Cong S Y, Ling X Z, et al. A unified formulation of stress-strain relations considering micro-damage for expansive soils exposed to freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018, 153:164-171.
21 赵顺利, 邓伟杰, 路新景, 等. 基于自然应变损伤模型的膨胀土冻融损伤分析[J]. 岩土工程学报, 2020, 42():127-131.
Zhao Shun-li, Deng Wei-jie, Lu Xin-jing, et al. Freeze-thaw damage analysis of expansive soils based on natural strain damage model[J]. Chinese Journal of Geotecnial Engineering, 2020, 42(Sup.1):127-131.
22 , 铁路工程土工试验规程 [S].
23 Lee W, Bohra N C, Altschaeffl A G, et al. Resilient modulus of cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2):131-136.
24 曲娜. 高寒区膨胀土特性及变形损伤研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2019.
Qu Na. Experimnetal investigation on the properties and deformation damage of expansive soils at high sltitude and cold regions[J]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2019.
25 余寿文, 冯西桥. 损伤力学[M]. 北京: 清华大学出版社, 1997.
26 周永强, 盛谦, 刘芳欣, 等. 一种修正的Drucker-Prager屈服准则[J]. 岩土力学, 2016, 37(6):1657-1664.
Zhou Yong-qiang, Sheng Qian, Liu Fang-xin, et al. A study of modified Drucker-Prager yield criterion[J]. Rock and Soil Mechanics, 2016, 37(6):1657-1664.
27 文畅平,任睆遐.基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报: 工学版, 2021, 51(5): 1716-1723.
Wen Chang-ping, Ren Huan-xia. Constitutive relation with double yield surface of bioenzyme-treated expansive soil based on Lade model[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1716-1723.
[1] 谢超,王起才,于本田,李盛,林晓旭,鲁志铭. 聚氨酯涂膜弹性模量的AFM测定及微观结构分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1322-1330.
[2] 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882.
[3] 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723.
[4] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[5] 徐虹, 刘亚楠, 于婷, 谷诤巍, 李湘吉, 张志强. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理[J]. 吉林大学学报(工学版), 2017, 47(1): 191-198.
[6] 赵宏伟, 董晓龙, 张霖, 胡晓利. 块体材料弹性模量的四点弯曲自动测试[J]. 吉林大学学报(工学版), 2016, 46(1): 140-145.
[7] 孟德建, 张立军, 方明霞, 余卓平. 面向制动踏板感觉的主缸动力学模型及其关键影响因素[J]. 吉林大学学报(工学版), 2015, 45(5): 1388-1394.
[8] 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
[9] 姜日花1,白爽1,戴跃2 ,赵梅生3. 瘢痕疙瘩的生物力学特性[J]. 吉林大学学报(工学版), 2011, 41(6): 1675-1677.
[10] 鲁金忠, 罗开玉, 盛叶健, 殷苏民, 张朝阳, 钟俊伟. 激光穿透液晶掩膜的透光机理及损伤阈[J]. 吉林大学学报(工学版), 2010, 40(05): 1288-1291.
[11] 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1-05.
[12] 金满,江中浩,连建设 . 短纤维增强金属基复合材料弹性模量临界值计算预测[J]. 吉林大学学报(工学版), 2006, 36(suppl.2): 1-5.
[13] 朱兴华, 侯亚君, 尚禹. 基于均匀化理论的骨小梁损伤刚度[J]. 吉林大学学报(工学版), 2004, (2): 169-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!