吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (5): 1716-1723.doi: 10.13229/j.cnki.jdxbgxb20200383

• 交通运输工程·土木工程 • 上一篇    

基于Lade模型的生物酶改良膨胀土双屈服面本构关系

文畅平(),任睆遐   

  1. 中南林业科技大学 土木工程学院,长沙 410018
  • 收稿日期:2020-06-01 出版日期:2021-09-01 发布日期:2021-09-16
  • 作者简介:文畅平(1965-),男,教授,博士.研究方向:岩土工程.E-mail:wcp13739071598@163.com
  • 基金资助:
    国家国际科技合作专项项目(2014DFA53120);湖南省科技创新计划项目(2020RC4049);湖南省重点学科建设项目(2013ZDXK006)

Constitutive relation with double yield surfaces of bioenzyme⁃treated expansive soil based on Lade model

Chang-ping WEN(),Huan-xia REN   

  1. School of Civil Engineering,Central South University of Forestry and Technology,Changsha 410018,China
  • Received:2020-06-01 Online:2021-09-01 Published:2021-09-16

摘要:

基于Lade模型,研究了生物酶改良膨胀土的双屈服面弹塑性应力-应变关系。首先,开展一系列不同生物酶掺量下改良膨胀土的等向固结排水试验、三轴固结排水剪切试验;然后,根据试验结果拟合Lade模型中的各参数与生物酶掺量之间的关系表达式;最后,建立基于生物酶掺量的Lade模型。研究表明:①体积应变εv随平均应力p的增大而非线性增大,当p一定时,εv随生物酶掺量增加而减小,εvp为非线性关系;②轴向应变ε1、侧向应变ε3均随偏应力q的增大而非线性增大,q随生物酶掺量增加而增大,在一定的围压σ3下,εv随生物酶掺量的增加而减小,q-ε1ε1-εvq-ε3等试验曲线都呈现出近似双曲线特征,q-ε1关系表现为应变硬化型,体应变εv表现为应变剪缩型;③基于生物酶掺量的Lade模型,能较准确地反映生物酶掺量对膨胀土应力-应变关系的影响,可较好地预测出不同生物酶掺量、不同围压σ3下的生物酶改良膨胀土的弹塑性应力-应变关系。

关键词: 道路工程, 生物酶改良膨胀土, 双屈服面本构关系, Lade模型, 弹塑性应力-应变关系

Abstract:

The elasto-plastic stress-strain behaviors with double yield surfaces of bioenzyme-treated expansive soil was studied based on Lade model. Firstly, a series of the isotropic consolidation drainage tests and the triaxial consolidated drained shear tests of bioenzyme-treated expansive soil under different ratio of bioenzyme-based soil stabilizer were conducted. Secondly, the expressions between the parameters of the Lade model and the ratio of bioenzyme-based soil stabilizer were fitted based on the triaxial test results. Finally, a Lade model based on the ratio of bioenzyme-based soil stabilizer was proposed. The study conclusions as follows: ①The bulk strainεv increases nonlinear with the average stressp, and decreases with the ratio of bioenzyme-based soil stabilizer at p is constant. The test curves of εv-pare nonlinear relationship. ②The axial strainε1, lateral strain ε3 increases nonlinear with the deviator stress q respectively, and q increases with the ratio of bioenzyme-based soil stabilizer. The bulk strainεv decreases with the ratio of bioenzyme-based soil stabilizer. The test curves of q-ε1ε1-εvq-ε3 are hyperbola respectively. The stress-strain relationships between q and ε1 are strain hardening, and the relationships between q and εv are shrinkage. ③A Lade model based on the ratio of bioenzyme-based soil stabilizer can better describe the effects of the ratio of bioenzyme-based soil stabilizer on the elasto-plastic stress-strain behavior of bioenzyme-treated expansive soil, and can well predict the stress-strain relationship of bioenzyme-treated expansive soil under different ratio of bioenzyme-based soil stabilizer and confining pressuresσ3.

Key words: road engineering, bioenzyme-treated expansive soil, constitutive model with double yield surfaces, Lade model, elasto-plastic stress-train relation

中图分类号: 

  • U416.1

图1

取土点膨胀土"

表1

膨胀土试样的主要物理力学指标"

指标数值指标数值
天然含水率w/%29.0标准吸湿含水率/%5.9
液限/%59.0无荷膨胀率/%8.9
塑限/%26.0胀缩总率/%4.1
塑性指数Ip/%33.0CBR/%2.15
最大干密度ρmax/(g·cm-31.65无侧限抗压强度/kPa248
最佳含水率wopt/%18.0<0.002 mm含量/%18.5
自由膨胀率/%64活动度1.78

图2

不同z下的εv-p试验曲线"

图3

z=0?%的三轴固结排水剪切试验曲线"

图4

z=5?%的三轴固结排水剪切试验曲线"

表2

模型参数拟合结果"

z/%K0n0K1n1mη1SRtKlαβ
01.4050.7461.0830.7970.694108.3200.327-1.0551.5020.6451.7362.652-0.406
11.5640.7010.9180.7820.974135.8430.312-2.3774.9530.6061.9322.801-0.372
21.7560.6370.8860.7711.194190.3560.302-4.0588.9560.5512.1702.913-0.308
31.9510.6140.7960.7671.445249.5170.287-5.31212.3270.5312.4113.002-0.267
42.1250.5930.7240.7531.882340.2450.272-6.71915.9040.5132.6263.165-0.224
52.4210.5350.6280.7482.351430.9730.259-8.80319.3520.4632.9913.237-0.172

图5

预测曲线与试验曲线"

1 戴文亭, 司泽华, 王振, 等. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报: 工学版, 2020, 50(2): 589-593.
Dai Wen-ting, Si Ze-hua, Wang Zhen, et al. Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 589-593.
2 宫亚峰, 申杨凡, 谭国金, 等. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报: 工学版, 2018, 48(3): 712-719.
Gong Ya-feng, Sheng Yang-fan, Tan Guo-jin, et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(3): 712-719.
3 Venkatasubramanian C, Dhinakran G. Effect of bio-enzymatic soil stabilization on unconfined compressive strength and California bearing ratio[J]. Journal of Engineering and Applied Sciences, 2011, 6(5): 295-298.
4 dos Santos L R, Crispim F A, del Paulo P R. Estabilização de solos com um aditivo a base de Enzimas para fins rodoviários[J]. Engineering and Science, 2018, 7(3): 2-11.
5 Mukesh T S, Bharath K J, Gokulraja B, et al. Comparitive analysis on soil properties by adding conventional stabilizer with enzymatic stabilizer[J]. International Journal of Advanced Science and Engineering Research, 2018, 3(1): 30-36.
6 Naagesh S, Gangadhara S. Swelling behaviour of bio-enzyme treated expansive soil[J]. International Journal of Earth Sciences and Engineering, 2011, 4(3): 555-560.
7 戴北冰, 徐锴, 杨峻, 等. 基于生物酶的固土技术在香港的应用研究[J]. 岩土力学, 2014, 35(6): 1735-1742.
Dai Bei-bing, Xu Kai, Yang Jun, et al. An investigation into application of bio-enzyme-based soil stabilization technology to Hong Kong[J]. Rock and Soil Mechanics, 2014, 35(6): 1735-1742.
8 曾娟娟, 文畅平, 苏伟, 等. 基于生物酶改良膨胀土的试验研究[J]. 建筑科学, 2017, 33(5): 69-73.
Zeng Juan-juan, Wen Chang-ping, Su Wei, et al. Experiment research of bio-enzyme expansive soil modified[J]. Building Science, 2017, 33(5): 69-73.
9 曾娟娟, 文畅平, 包嘉邈, 等. 生物酶改性膨胀土室内三轴试验研究[J]. 中国科技论文, 2017, 12(6): 660-665.
Zeng Juan-juan, Wen Chang-ping, Bao Jia-miao, et al. Study on bio-enzyme-treated expansive soil by laboratory triaxial test[J]. China Science Paper, 2017, 12(6): 660-665.
10 曾娟娟, 文畅平, 刘子健. 生物酶改良膨胀土的压缩特性[J]. 土木建筑与环境工程, 2018, 40(3): 133-138.
Zeng Juan-juan, Wen Chang-ping, Liu Zi-jian. Characteristics of compressibility of bio-enzyme expansive soil modified[J]. Journal of Civil,Architectural & Environmental Engineering, 2018, 40(3): 133-138.
11 Lade P V, Duncan J M. Elasto-plastic stress-strain theory for cohesionless soil[J]. ASCE Journal of Geotechnical Engineering Division, 1975, 101: 1037-1053.
12 Lade P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. International Journal of Solids and Structures, 1977, 13(11): 1019-1035.
13 陈晓平, 杨光华, 杨雪强. 土的本构关系[M]. 北京: 中国水利水电出版社, 2011.
14 Kondner R L. Hyperbolic stress-strain response:cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(1): 115-143.
15 Janbu N. Soil compressibility as determined by odometer and triaxial tests[C]∥Proceedings of European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, 1963: 19-25.
[1] 王元元,孙璐,刘卫东,薛金顺. 测量路面三维纹理双目重构算法的约束改进[J]. 吉林大学学报(工学版), 2021, 51(4): 1342-1348.
[2] 彭勇,杨汉铎,陆学元,李彦伟. 基于离散元法的空隙特征对沥青混合料虚拟剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 956-964.
[3] 朱伟刚,朱超,张亚球,魏海斌. 基于卷积格网曲面拟合滤波算法的数字高程模型构建及质量评价[J]. 吉林大学学报(工学版), 2021, 51(3): 1073-1080.
[4] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[5] 宫亚峰,逄蕴泽,王博,谭国金,毕海鹏. 基于吉林省路况的新型预制装配式箱涵结构的力学性能[J]. 吉林大学学报(工学版), 2021, 51(3): 917-924.
[6] 阳恩慧,徐加秋,唐由之,李奥,邱延峻. 温拌剂对沥青断裂和老化性能的影响[J]. 吉林大学学报(工学版), 2021, 51(2): 604-610.
[7] 戴文亭,司泽华,王振,王琦. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593.
[8] 方宇,孙立军. 基于生存分析的城市桥梁使用性能衰变模型[J]. 吉林大学学报(工学版), 2020, 50(2): 557-564.
[9] 王芳,李晓光,郭慧,胡佳. 基于驾驶员视觉兴趣区的沙漠草原公路曲线间直线段线形指标优化[J]. 吉林大学学报(工学版), 2020, 50(1): 114-120.
[10] 王英,李萍,念腾飞,姜继斌. 基于动水冲刷作用的沥青混合料短期水损害特性[J]. 吉林大学学报(工学版), 2020, 50(1): 174-182.
[11] 万平,吴超仲,马晓凤. 基于ROC曲线和驾驶行为特征的驾驶愤怒强度判别阈值[J]. 吉林大学学报(工学版), 2020, 50(1): 121-131.
[12] 熊锐,乔宁,褚辞,杨发,关博文,盛燕萍,牛冬瑜. 掺盐沥青胶浆低温流变及粘附特性[J]. 吉林大学学报(工学版), 2020, 50(1): 183-190.
[13] 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173.
[14] 狄胜同,贾超,乔卫国,李康,童凯. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报(工学版), 2019, 49(6): 1900-1910.
[15] 张云龙,周刘光,王静,吴春利,吕翔. 冻融对粉砂土力学特性及路堤边坡稳定性的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1531-1538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!