吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1322-1330.doi: 10.13229/j.cnki.jdxbgxb.20210918

• 材料科学与工程 • 上一篇    

聚氨酯涂膜弹性模量的AFM测定及微观结构分析

谢超1(),王起才1,2(),于本田1,李盛1,2,林晓旭1,鲁志铭3   

  1. 1.兰州交通大学 土木工程学院,兰州 730070
    2.兰州交通大学 道桥工程灾害防治技术国家地方联合工程实验室,兰州 730070
    3.甘肃第七建设集团股份有限公司,兰州 730030
  • 收稿日期:2021-09-13 出版日期:2023-05-01 发布日期:2023-05-25
  • 通讯作者: 王起才 E-mail:327600231@qq.com;13909486262@163.com
  • 作者简介:谢超(1990-),男,讲师,博士.研究方向:土木工程材料与结构.E-mail:327600231@qq.com
  • 基金资助:
    甘肃省自然科学基金项目(22JR5RA333);国家自然科学基金项目(51768033);长江学者和创新团队发展计划滚动项目(IRT_15R29)

Determination of elastic modulus by atomic force microscopy and microstructure analysis for polyurethane coating film

Chao XIE1(),Qi-cai WANG1,2(),Ben-tian YU1,Sheng LI1,2,Xiao-xu LIN1,Zhi-ming LU3   

  1. 1.College of Civil Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.National and Local Joint Engineering Laboratory for Disaster Prevention and Control Technology of Road and Bridge Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    3.Gansu Seventh Construction Group Co. ,Ltd. ,Gansu Lanzhou 730030,China
  • Received:2021-09-13 Online:2023-05-01 Published:2023-05-25
  • Contact: Qi-cai WANG E-mail:327600231@qq.com;13909486262@163.com

摘要:

为测定聚氨酯涂膜的弹性模量,建立了正三棱锥形态原子力显微镜(AFM)探针与涂膜的力学接触模型。同时,通过分析AFM的力学测试曲线,得出了探针与涂膜之间的力-压痕深度关系,并将其与力学接触模型相结合,确定了涂膜的弹性模量。此外,通过正电子湮灭技术测试了涂膜的微观结构,并与其弹性模量进行了对比分析。最后,采用灰色关联理论对微观结构参数与涂膜弹性模量的相关性进行了研究。结果表明:涂膜的弹性模量测定结果为6.118~6.917 MPa,与现有文献中聚氨酯涂膜弹性模量的研究结果一致,证明该方法测定结果准确。由于自由体积尺寸及含量的增大降低了基材对其分子链段运动的限制能力,故涂膜的弹性模量与其自由体积孔径及自由体积分数均呈负相关性,其中,涂膜的自由体积平均孔径对其弹性模量的影响程度更高。

关键词: 弹性模量, 原子力显微镜, 微观结构, 自由体积, 灰色关联度

Abstract:

In this work, the mechanical contact model between normal triangular atomic force microscopy(AFM) probe and coating film was established, which aims to measure the elastic modulus of polyurethane coating film. Whilst the force-indentation depth relationship between the probe and the coating film was obtained by analyzing the AFM's mechanical test curve, and the elastic modulus of the coating film was determined by combining the newly established model. In addition, the microstructure of the coating film was tested using positron-annihilation technology, and compared with its elastic modulus. Finally, the grey correlation theory is used to analyze the correlation between the microstructure parameters and the elastic modulus of the coating film. The results show that the elastic modulus of the coating film was measured within the region of 6.118 MPa to 6.917 MPa. This is consistent with the research results of the elastic modulus of polyurethane coating in existing literature, which guarantees the validity and accuracy of the present method. The elastic modulus of the coating film is negatively correlated with its free volume aperture and free volume fraction since that the restriction ability of the substrate to its molecular chain segment movement is significantly lowered with the increase of free volume size and content. Among them, the free volume average pore diameter of the coating film has higher effects on its elastic modulus.

Key words: elastic modulus, atomic force microscopy, microstructure, free volume, grey relational degree

中图分类号: 

  • TB332

图1

涂膜样品"

图2

样品与探测器之间的位置关系"

图3

AFM探针针尖的微观形态"

表1

棱锥数对力-压痕结果的影响系数"

棱锥数(n影响系数(C0棱锥数(n影响系数(C0
31.777101.300
41.491151.285
51.398201.280
61.355501.274
81.316

图4

测试曲线各阶段探针的受力情况"

图5

样品与AFM针尖系统在试验中的相对运动位置"

图6

各组涂膜的力-压痕深度曲线"

表2

涂膜弹性模量的计算结果"

试件编号E/MPaR2
F106.1180.978
F156.3630.957
F206.9170.986
F256.6390.964
F306.5120.948

图7

各组样品的正电子湮灭寿命谱"

图8

各组试样的解谱拟合系数"

图9

各组试样的o-Ps湮灭寿命"

图10

各组试样的o-Ps湮灭强度"

图11

各组试样的自由体积平均孔径及含量"

表3

灰色关联度的计算数据"

试件编号初值化序列差序列相关系数
X0'XR'XF'ΔR-0ΔF-0γ0Rkγ0Fk
F101110011
F151.040 045 7670.991 054 9040.944 326 9910.048 990 8620.095 718 7760.802 727 3410.675 605 203
F201.130 598 2350.937 075 8790.731 853 4180.193 522 3560.398 744 8170.507 416 7150.333 308 356
F251.085 158 5490.975 015 4230.842 142 3540.110 143 1260.243 016 1950.644 117 6990.450 644 743
F301.064 400 1310.980 876 0020.891 120 5070.083 524 1280.173 279 6230.704 730 4090.534 981 621
1 金伟良, 赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报: 工学版, 2002(4): 27-36, 59.
Jin Wei-liang, Zhao Yu-xi. State-of-the-art on durability of concrete structures[J]. Journal of Zhejiang University(Engineering Science), 2002(4): 27-36, 59.
2 张铖, 李维红, 范金朋, 等.相对法评价涂层混凝土冻融损伤[J].建筑材料学报, 2020, 23(3): 546-551.
Zhang Cheng, Li Wei-hong, Fan Jin-peng, et al. Relative method for evaluating freeze-thaw damage of coated concrete[J]. Journal of Building Materials, 2020, 23(3): 546-551.
3 Almusallam A A, Khan F M, Dulaijan S U, et al. Effectiveness of surface coatings in improving concrete durability[J]. Cement & Concrete Composites, 2003, 25(4): 473-481.
4 Dubosc A, Escadeillas G, Blanc P J. Characterization of biological stains on external concrete walls and influence of concrete as underlying material[J]. Cement and Concrete Research, 2001, 31(11): 1613-1617.
5 Shikama T, Shinno H, Fukutomi M, et al. Mechanical properties of molybdenum coated with titanium carbide film[J]. Journal of Materials Science, 1983, 18(10): 3092-3098.
6 Bhattacharya A K, Nix W D. Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates[J]. International Journal of Solids & Structures, 1988, 24(12): 1287-1298.
7 Chiu C C, Case E D. Elastic modulus determination of coating layers as applied to layered ceramic composites[J]. Materials Ence and Engineering A, 1991, 132(91): 39-47.
8 Liu S, Wang Q J. Determination of young's modulus and poisson's ratio for coatings[J]. Surface & Coatings Technology, 2007, 201(14): 6470-6477.
9 陈杨, 陈爱莲, 秦佳伟, 等.亚微米介孔二氧化硅微球的制备及其弹性模量的拟合计算[J].中国有色金属学报, 2017, 27(6): 1228-1235.
Chen Yang, Chen Ai-lian, Qin Jia-wei, et al. Preparation of submicrometer mesoporous silica microspheres and fitting calculation for elastic moduli[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1228-1235.
10 陈爱莲, 马翔宇, 王婉莹, 等.树枝状介孔氧化硅及其复合颗粒的制备和压缩弹性模量[J]. 硅酸盐学报, 2020, 48(1): 65-72.
Chen Ai-lian, Ma Xiang-yu, Wang Wan-ying,et al. Preparation and compressive elastic moduli of dendritic mesoporous silica particles and their composites[J]. Journal of The Chinese Ceramic Society, 2020, 48(1): 65-72.
11 刘畅, 许金泉, 孟祥琦, 等.基于原子力显微镜的薄膜涂层界面观测及其变形特性[J].上海交通大学学报, 2011, 45(10): 1485-1488.
Liu Chang, Xu Jin-quan, Meng Xiang-qi, et al. Analysis of interface macrostructure of thin coating material and its related elastic mechanical behavior based on AFM[J]. Journal of Shanghai Jiaotong University, 2011, 45(10): 1485-1488.
12 陈杨, 穆为彬, 陆锦霞. 核壳结构PS/CeO2复合微球弹性模量的AFM测定[J]. 摩擦学学报, 2012, 32(1): 7-13.
Chen Yang, Mu Wei-bin, Lu Jin-xia. Determination of elastic modulus of composite PS/CeO_2 core-shell microspheres by atomic force microscope[J]. Tribology, 2012, 32(1): 7-13.
13 Rico F, Roca-Cusachs P, Gavara N, et al. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips[J]. Physical Review E, 2005, 72(2): 021914.
14 Heuberger M. Elastic deformations of tip and sample during atomic force microscope measurements[J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 1996, 14(2): 1250-1254.
15 Mathur A B, Collinsworth A M, Reichert W M, et al. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy[J]. Journal of Biomechanics, 2001, 34(12): 1545-1553.
16 Cheng K M, Tian C R, Du Y, et al. Effect of OPS dispersion method on the free volume of polyurethane by positron annihilation lifetime spectroscopy(PALS)[J]. Polymer Plastics Technology& Engineering, 2012, 51(4): 396-400.
17 Borek J, Osoba W. Free volume changes in physically aged polyethylene by positron annihilation[J]. Polymer, 2001, 42(7): 2901-2905.
18 Jean Y C, Horn J D V, Hung W S, et al. Perspective of positron annihilation spectroscopy in polymers[J]. Macromolecules, 2013, 46(18): 7133-7145.
19 Gomaa E, Asaad J N. Effect of adding feldspar on free volume properties of crosslinked polyester studied by positron annihilation lifetime spectroscopy[J]. Journal of Applied Polymer Science, 2012, 124(4): 3142-3146.
20 颜可珍, 王道珵.聚合物改性沥青低温性能指标研究[J].建筑材料学报, 2020, 23(2): 479-484.
Yan Ke-zhen, Wang Dao-cheng. Low temperature performance index of polymer modified asphalt[J]. Journal of Building Materials, 2020, 23(2): 479-484.
21 于本田, 王起才, 张粉芹, 等.粗骨料对混凝土性能影响的试验研究[J]. 硅酸盐通报, 2011, 30(6): 1371-1375.
Yu Ben-tian, Wang Qi-cai, Zhang Fen-qin, et al. Low experimental study on effect of different parameters of coarse aggregate on properties of concrete[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(6): 1371-1375.
22 Sui T, Wei L, Cao X, et al. Comparison of oxygen vacancy and interstitial oxygen in KDP and ADP crystals from density functional theory calculations[J]. Computational Materials Science,2020,182: 109783.
23 Bilodeau G G. Regular pyramid punch problem[J]. Journal of Applied Mechanics, 1992, 59(3): 519-523.
24 Wang Z, Gao Z, Wang Y, et al. A new dynamic testing method for elastic, shear modulus and Poisson's ratio of concrete[J]. Construction & Building Materials, 2015, 100(15): 129-135.
25 Tan S, Sherman R L, Ford W T. Nanoscale compression of polymer microspheres by atomic force microscopy[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2004, 20(17): 7015-7034.
26 Lyne A L, Wallqvist V, Birgisson B. Adhesive surface characteristics of bitumen binders investigated by Atomic Force Microscopy[J]. Fuel, 2013, 113(1): 248-256.
27 Saalah S, Abdullah L C, Aung M M, et al. Waterborne polyurethane dispersions synthesized from jatropha oil[J]. Industrial Crops & Products, 2015, 64:194-200.
28 Lei L, Xia Z, Ou C, et al. Effects of crosslinking on adhesion behavior of waterborne polyurethane ink binder[J]. Progress in Organic Coatings, 2015, 88: 155-163.
29 Kanyanta V, Ivankovic A. Mechanical characterisation of polyurethane elastomer for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(1): 51-62.
30 Giancarlo U L, Wolfgang G K. Free volume theory and nonlinear thermo visco elasticity[J]. Polymer Engineering & Science, 2010, 32(8): 542-557.
31 Borek J, Osoba W. Free volume changes in physically aged polyethylene by positron annihilation[J]. Polymer, 2001, 42(7): 2901-2905.
32 Li Y, Liu J, Wan X, et al. Surface passivation enabled-structural engineering of I-III-VI2 nanocrystal photocatalyst[J]. Journal of Materials Chemistry A, 2020, 8(19): 9951-9962.
33 Wang B, Gong W, Liu W H, et al. Influence of physical aging and side group on the free volume of epoxy resins probed by positron[J]. Polymer, 2003, 44(14): 4047-4052.
34 El-Meniawi M A H, Mahmoud K R, Megahed M. Positron annihilation spectroscopy and mechanical properties studies for epoxy matrices reinforced with different nanoparticles[J]. Journal of Polymer Research, 2016, 23(9): 181.
[1] 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882.
[2] 程永春,李赫,李立顶,王海涛,白云硕,柴潮. 基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J]. 吉林大学学报(工学版), 2021, 51(3): 925-935.
[3] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[4] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[5] 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
[6] 徐虹, 刘亚楠, 于婷, 谷诤巍, 李湘吉, 张志强. 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理[J]. 吉林大学学报(工学版), 2017, 47(1): 191-198.
[7] 赵宏伟, 董晓龙, 张霖, 胡晓利. 块体材料弹性模量的四点弯曲自动测试[J]. 吉林大学学报(工学版), 2016, 46(1): 140-145.
[8] 孟德建, 张立军, 方明霞, 余卓平. 面向制动踏板感觉的主缸动力学模型及其关键影响因素[J]. 吉林大学学报(工学版), 2015, 45(5): 1388-1394.
[9] 关庆丰, 李艳, 侯秀丽, 杨盛志, 王晓彤. 固溶态Mg-Gd-Y-Nd合金强流脉冲电子束表面改性[J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
[10] 关庆丰,季乐,蔡杰,杨盛志,刘世超,张在强,侯秀丽. 强流脉冲电子束轰击作用下3Cr13不锈钢的微观结构及性能[J]. 吉林大学学报(工学版), 2014, 44(3): 712-717.
[11] 关庆丰, 邹阳, 张在强, 关锦彤, 苏景新, 王志平. 强流脉冲电子束作用下纯铜的微观结构与腐蚀性能[J]. 吉林大学学报(工学版), 2013, 43(04): 964-969.
[12] 李秀娟, 梁云虹, 张志辉, 任露泉. 杨树叶片的微观结构及拉伸特性[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 440-443.
[13] 房岩, 孙刚, 丛茜, 郭华曦. 蝗虫翅表面微观结构及疏水耦合机理[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 419-422.
[14] 姜日花1,白爽1,戴跃2 ,赵梅生3. 瘢痕疙瘩的生物力学特性[J]. 吉林大学学报(工学版), 2011, 41(6): 1675-1677.
[15] 詹小丽, 张肖宁, 王端宜, 卢亮. 基于DMA方法的沥青胶浆微观结构[J]. 吉林大学学报(工学版), 2009, 39(04): 916-920.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!