吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (11): 3186-3193.doi: 10.13229/j.cnki.jdxbgxb.20220036

• 计算机科学与技术 • 上一篇    下一篇

多媒体终端上新型压力交互范式研究

秦贵和1,2(),王曼莹3,孙铭会1,2()   

  1. 1.吉林大学 计算机科学与技术学院,长春 130012
    2.吉林大学 符号计算与知识工程教育部重点实验室,长春 130012
    3.一汽大众汽车有限公司,长春 130011
  • 收稿日期:2022-01-09 出版日期:2023-11-01 发布日期:2023-12-06
  • 通讯作者: 孙铭会 E-mail:qingh@jlu.edu.cn;smh@jlu.edu.cn
  • 作者简介:秦贵和(1962-),男,教授,博士.研究方向:智能控制,嵌入式系统,汽车电子与信息技术.E-mail:qingh@jlu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(61872164);吉林省科技发展计划项目(20220201147GX);中央高校基本科研业务费专项项目(2022-JCXK-02)

Research on a pressure-based interaction paradigm for multimedia terminal

Gui-he QIN1,2(),Man-ying WANG3,Ming-hui SUN1,2()   

  1. 1.Collage of Computer Science and Technology,Jilin University,Changchun 130012,China
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,Jilin University,Changchun 130012,China
    3.FAW-Volkswagen Automotive Company Ltd. ,Changchun 130011,China
  • Received:2022-01-09 Online:2023-11-01 Published:2023-12-06
  • Contact: Ming-hui SUN E-mail:qingh@jlu.edu.cn;smh@jlu.edu.cn

摘要:

针对移动终端上压力交互提出一种新型界面范式LWHP,并通过Bayes方法推理用户交互意图,优化压力空间划分。LWHP范式采用三维办公桌隐喻,包含图层(Layer),部件(Widget)、层级菜单(Hierarchical Menu)和压力手势(Pressure+Gesture)4个组成要素。基于用户历史输入的Bayes层级菜单分层优化算法,结合压力信号、交互特征(时间和跨越选项次数)和情境信息对用户意图分析解释,优化压力空间划分方式,提高交互准确性和自然性。最后,通过一个基于LWHP范式的相册交互场景阐述其应用和相关部件设计。

关键词: 人机交互, 界面范式, 用户界面, 压力输入, 智能手机, 组件

Abstract:

The pressure-and multi-touch-based smartphone user interface uses multiple interaction techniques to improve input efficiency and reduce finger fatigue. With wide application prospect, it can enhance natural interaction and using experience between human and smartphone, which makes it simple to use. For interactions on pressure-and multi-touch-based smartphone user interface, aiming at the problems of lacking relevant graphic user interface paradigms and the limits of the existing paradigms, a new interface paradigm called LWHP for interaction on the mobile devices, and an algorithm predicting users' input intent and optimizing the division for pressure space using Bayesian method are presented. In LWHP paradigm, L means Layer, W means Widget, H means Hierarchical Menu, and P means Pressure+Gesture. Compared with WIMP paradigm, LWHP paradigm is designed on the desk metaphor, which extends the desktop metaphor from two dimensions to three dimensions, which decreases users' cognitive and learning load by imitating daily scenes and real working environment. Considering the different habit between individuals when interacting by pressure, the division of pressure spaces should be finer-adjusted according to their previous input. The optimizing algorithm collects the pressure signals, the properties of user behavior(Movement Time and Number of Crossings), and the environmental information, and uses Bayesian method to interpret and predict users' input, which improves the accuracy and enhances natural interaction. At the end, a pressure-based album application designed with LWHP paradigm is described to illustrate how the new paradigm is applied and the advantages of these pressure-based components.

Key words: human-computer interaction, interface paradigm, user interface, pressure input, smartphone, component

中图分类号: 

  • TP37

图1

压力值模型分布示例"

图2

压力交互属性模型示例"

图3

基于用户历史输入的Bayes分层优化模型"

图4

键盘部件的三维部件按钮"

1 许为. 再论以用户为中心的设计: 新挑战和新机遇[J]. 人类工效学, 2017, 23(1): 82-86.
Xu Wei. User-centered design(Ⅱ): new challenges and new chances[J]. Chinese Journal of Ergonomics, 2017, 23(1): 82-86.
2 范俊君, 田丰, 杜一, 等. 智能时代人机交互的一些思考[J]. 中国科学: 信息科学, 2018, 48(4): 361-375.
Fan Jun-jun, Tian Feng, Du Yi, et al. Thoughts on human-computer interaction in the age of artificial intelligence[J]. Sci Sin Inform, 2018, 48(4): 361-375.
3 Corsten C, Lahaye M, Borchers J, et al. ForceRay: extending thumb reach via force input stabilizes device grip for mobile touch input[C]∥Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 2019: 1-12.
4 Hakka K, Isomoto T, Shizuki B. One-handed interaction technique for single-touch gesture input on large smartphones[C]∥Symposium on Spatial User Interaction, New Orleans, USA, 2019: 1-2.
5 Corsten C, Voelker S, Link A, et al. Use the force picker, luke: space-efficient value input on force-sensitive mobile touchscreens[C]∥Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, Canada, 2018: 1-12.
6 Lumsden J, Brewster S. A paradigm shift for mobile interaction: a decade later[C]∥Proceedings of the 2013 Conference of the Center for Advanced Studies on Collaborative Research, Toronto, Canada, 2013: 2-9.
7 Brewster S A, Hughes M. Pressure-based text entry for mobile devices[C]∥Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services, Bonn, Germany, 2009: 1-4.
8 Hsiu M C, Huang D Y, Chen C, et al. ForceBoard: using force as input technique on size-limited soft keyboard[C]∥Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, Florence, Italy, 2016: 599-604.
9 Green M, Jacob R. SIGGRAPH'90 workshop report: software architectures and metaphors for non-WIMP user interfaces[J]. ACM SIGGRAPH Computer Graphics, 1991, 25(3): 229-235.
10 Dam A V. Post-WIMP user interfaces[J]. Communications of the ACM, 1997, 40(2): 63-67.
11 Jacob R J K, Girouard A, Hirshfield L M, et al. Reality-based interaction: a framework for post-WIMP interfaces[C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, Canada, 2008: 201-210.
12 石磊, 邓昌智, 戴国忠. 一种 Post-WIMP 界面: PGIS 的实现[J]. 中国图象图形学报, 2010, 15(7): 985-992.
Shi Lei, Deng Chang-zhi, Dai Guo-zhong. Implementation of PGIS: a type of post-WIMP user interface[J]. Journal of Image and Graphics, 2010, 15(7): 985-992.
13 Robbins D C, Lee B, Fernandez R. TapGlance: designing a unified smartphone interface[C]∥Proceedings of the 7th ACM conference on Designing interactive systems, Cape Town, South Africa, 2008: 386-394.
14 张小龙, 吕菲, 程时伟. 智能时代的人机交互范式[J]. 中国科学: 信息科学, 2018, 48: 406-418.
Zhang Xiao-long, Fei Lyu, Cheng Shi-wei. Interaction paradigm in intelligent systems[J]. Sci Sin Inform, 2018, 48: 406-418.
15 Kay M, Nelson G L, Hekler E B. Researcher-centered design of statistics: why Bayesian statistics better fit the culture and incentives of HCI[C]∥Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, USA, 2016: 4521-4532.
16 王利民,刘洋,孙铭会,等. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报: 工学版, 2018, 48(6): 1851-1858.
Wang Li-min, Liu Yang, Sun Ming-hui, et al. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
17 Goodman J, Venolia G, Steury K, et al. Language modeling for soft keyboards[C]∥Proceedings of the 7th International Conference on Intelligent User Interfaces, San Francisco, USA, 2002: 194-195.
18 Yu C, Sun K, Zhong M, et al. One-dimensional handwriting: inputting letters and words on smart glasses[C]∥Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, USA, 2016: 71-82.
19 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报: 工学版, 2022, 52(8): 1881-1888.
Qin Gui-he, Huang Jun-feng, Sun Ming-hui. Text input based on two-handed keyboard in virtual environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1881-1888.
20 易鑫, 喻纯, 史元春. 普适计算环境中用户意图推理的 Bayes 方法[J]. 中国科学: 信息科学, 2018, 48: 419-432.
Yi Xin, Yu Chun, Shi Yuan-chun. Bayesian method for intent prediction in pervasive computing environments[J]. Sci Sin Inform, 2018, 48: 419-432.
21 Ramos G, Boulos M, Balakrishnan R. Pressure widgets[C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, Canada, 2004: 487-494.
22 文涛, 李雪, 李晟, 等. 手机输入法可用性评估研究[J]. 人类工效学, 2012, 18(2): 27-31.
Wen Tao, Li Xue, Li Sheng, et al. Usability evaluation of input methods in mobile phone[J]. Chinese Journal of Ergonomics, 2012, 18(2): 27-31.
23 Wang F, Ren X. Empirical evaluation for finger input properties in multi-touch interaction[C]∥Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, Canada, 2009: 1063-1072.
[1] 张惠,聂志玲,肖宏伟,王聃星. 无人驾驶汽车智能座舱人机交互界面色彩设计[J]. 吉林大学学报(工学版), 2023, 53(5): 1315-1321.
[2] 孙舒杨,程玮斌,张浩桢,邓向萍,齐红. 基于深度学习的两阶段实时显式拓扑优化方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2942-2951.
[3] 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报(工学版), 2022, 52(8): 1881-1888.
[4] 李学勇,赵仲秋,张春松,路长厚. 基于有限元的人体⁃机械手交互力计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1612-1619.
[5] 刘元宁,吴迪,朱晓冬,张齐贤,李双双,郭书君,王超. 基于YOLOv3改进的用户界面组件检测算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1026-1033.
[6] 管乃彦,郭娟利. 基于姿态估计算法的组件感知自适应模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1850-1855.
[7] 孟书, 申桂香, 张英芝, 龙哲, 曾文彬. 基于时间相关的数控机床系统组件更换时间[J]. 吉林大学学报(工学版), 2016, 46(6): 1946-1952.
[8] 赵伟, 曲慧雁. 基于云计算Map-Reduce模型的快速碰撞检测算法[J]. 吉林大学学报(工学版), 2016, 46(2): 578-584.
[9] 董立岩, 高洋, 李永丽, 任时鸣. 一种基于网格采样的手势识别算法[J]. 吉林大学学报(工学版), 2013, 43(06): 1621-1625.
[10] 曹晓宁, 刘玉梅, 苏建, 王秀刚, 李卓. 转向架质心高度的测定[J]. 吉林大学学报(工学版), 2013, 43(02): 329-333.
[11] 冯铁, 柴胜, 张家晨, 冉宏敏. 一种软件体系结构动态变动影响分析方法[J]. 吉林大学学报(工学版), 2011, 41(02): 458-0462.
[12] 秦进,史峰,邓连波,肖龙文. 道路交通网络效率定量评价方法及其应用[J]. 吉林大学学报(工学版), 2010, 40(01): 47-0051.
[13] 郭孔辉;吕济明;丁海涛;郭文鑫. 基于MATLAB的车辆组件模型库的设计与实现[J]. 吉林大学学报(工学版), 2006, 36(06): 866-0870.
[14] 刘萍萍, 周求湛, 徐昊, 申铉京. 混合型分布式入侵检测系统模型[J]. 吉林大学学报(工学版), 2004, (4): 666-670.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .