α噪声,特征指数,叠加性质,几何功率," /> α噪声,特征指数,叠加性质,几何功率,"/> 基于几何功率的<i>α</i>噪声的特征指数估计方法

吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (10): 3007-3013.doi: 10.13229/j.cnki.jdxbgxb.20211329

• 通信与控制工程 • 上一篇    下一篇

基于几何功率的α噪声的特征指数估计方法

石屹然(),齐金伟,曲思凝,潘向阳,符麟   

  1. 吉林大学 通信工程学院,长春 130022
  • 收稿日期:2021-12-06 出版日期:2023-10-01 发布日期:2023-12-13
  • 作者简介:石屹然(1984-),男,教授,博士生导师. 研究方向:弱信号处理,复杂噪声背景下参量估计.E-mail: shiyiran@jlu.edu.cn
  • 基金资助:
    国家自然科学基金重大项目(51835006)

Estimation method based on geometric power for characteristic exponent of α noise

Yi-ran SHI(),Jin-wei QI,Si-ning QU,Xiang-yang PAN,Lin FU   

  1. College of Communication Engineering,Jilin University,Changchun 130022,China
  • Received:2021-12-06 Online:2023-10-01 Published:2023-12-13

摘要:

α噪声背景下的信号处理问题是该领域的热点问题,但在实际工况中极难直接获得α噪声的特征指数的相关信息,这使得分数低阶统计算法的应用变得尤为困难。针对上述问题,本文提出了一种基于α稳定分布叠加性质以及几何功率的特征指数估计方法。首先利用叠加性质确定了多个独立同分布的α稳定分布变量与其和分布变量的关系,然后利用其原变量以及与变量几何功率间的特点实现对特征指数的估计。实验结果表明,该算法不需要获取特征指数的范围,在0~2范围内均可对其进行准确估计,均方根误差最大约为0.1,在对海杂波数据进行估计时偏差仅为0.02,可以为α噪声下的信号处理问题提供先验信息。

关键词: 信号处理, α噪声')">α噪声, 特征指数, 叠加性质, 几何功率

Abstract:

Signal processing in the background of α noise is a hot issue in this field, but it is very difficult to directly obtain the relevant information of characteristic exponent of α noise in actual working conditions, which makes the application of fractional low-order statistical algorithm become particularly difficult. An estimation method based on the plus property of α-stable distribution and geometric power was proposed regarding the issue above. Firstly, the plus property is used to determine the relationship between several independent variables with the same α-stable distribution and the distribution of their sum. Then the characteristic exponent is estimated by using the characteristics the geometric power between the original variables and their sum-distribution variable. The experimental results show that this algorithm does not need to obtain the range of the characteristic exponent in advance. And it can be accurately estimated in the range of 0—2, the maximum root-mean-square error of the estimation result is only about 0.1 and the deviation is only 0.02 when it is estimated the sea clutter data, which can provide a priori information under the signal processing problem based on α noise.

Key words: signal processing, α noise, characteristic exponent, plus property, geometric power

中图分类号: 

  • TN911.7

图1

α值估计结果"

图2

α值估计均方根误差曲线"

图3

不同γ值下α值估计结果"

图4

不同γ值下α值估计均方根误差曲线"

图5

不同采样次数下α值估计结果"

图6

不同采样次数下α值均方根误差曲线"

图7

不同数据总长下α值估计结果"

图8

不同数据总长下α值均方根误差曲线"

图9

不同方法下α值估计结果"

图10

不同方法下α值均方根误差曲线"

表1

不同算法计算时间 (s)"

估计方法α=0.2α=0.9α=1.2α=1.9
几何功率法0.000 340.000 320.000 390.000 35
组合分布法(p=0.1)0.000 890.000 870.000 950.000 82
负阶矩法0.123 10.124 30.125 50.123 7

表2

实测数据验证"

估计方法估计值偏差
几何功率法1.540.02
组合分布法(p=0.8)1.610.05
组合分布法(p=1.5)1.810.25
负阶矩法1.640.08
1 王平波, 卫红凯, 娄良轲, 等. 海洋混响数据的SαS分布建模[J]. 哈尔滨工程大学学报, 2021, 42(1): 55-60.
Wang Ping-bo, Wei Hong-kai, Lou Liang-ke, et al. Oceanic reverberation probability density modeling based on symmetric alpha-stable distribution[J]. Journal of Harbin Engineering University, 2021, 42(1): 55-60.
2 Grzesiek A, Sikora G, Teuerle M, et al. Spatio-Temporal Dependence Measures for Bivariate AR(1) Models with α‐Stable Noise[J]. Journal of Time Series Analysis, 2020, 41(3): 454-475.
3 Gottwald G A, Melbourne I. Simulation of non-Lipschitz stochastic differential equations driven by α-stable noise: a method based on deterministic homogenization[J]. SIAM Journal on Multiscale Modeling and Simulation, 2021, 19(2): 665-687.
4 Chen S, Gu F, Liang C, et al. Review on active noise control technology for α-stable distribution impulsive noise[J]. Circuits Systems and Signal Processing, 2021(3): 1-38.
5 Zhou K, Wang H, Cao P, et al. Performance evaluation for Chirp-BOK modulation scheme under Alpha-stable noise[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2020, 103(4): 723-727.
6 Shao M, Nikias C L. Signal processing with fractional lower order moments: stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986-1010.
7 Shao M, Nikias C L. Detection and adaptive estimation of stable processes with fractional lower-order moments[C]∥IEEE Sixth SP Workshop on Statistical Signal and Array Processing, Victoria, Canada, 1992: 94-97.
8 DuMouchel W H. On the asymptotic normality of the maximum likelihood estimate when sampling form a stable distributions[J]. Annals of Statistics, 1973, 1(5): 948-957.
9 Fama E F, Roll R. Parameter estimation for symmetric stable distributions[J]. Journal of the American Statistical Association, 1971, 66(334): 331-338.
10 Ma X, Nikias C L. Parameter estimation and blind channel identification in impulsive signal environments[J]. IEEE Transactions on Signal Processing, 1995, 43(12): 2884-2897.
11 关济实, 石要武, 邱建文, 等. α稳定分布特征指数估计算法[J]. 吉林大学学报: 工学版, 2018, 48(2): 618-624.
Guan Ji-shi, Shi Yao-wu, Qiu Jian-wen, et al. New algorithm to estimate characteristic exponent of α-stable distribution[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 618-624.
12 石屹然, 赵晓晖, 李新波, 等. α噪声背景下基于标准归一化相关函数的谐波信号频率估计的MUSIC方法 [J]. 吉林大学学报: 工学版, 2016, 46(3): 923-928.
Shi Yi-ran, Zhao Xiao-hui, Li Xin-bo, et al. Standard normalized correlation-based MUSIC method for harmonic signal frequency estimation in Noise[J]. Journal of Jilin University (Engineer and Technology Edition), 2016, 46(3): 923-928.
13 李庚垚. 超声波雪深测量系统的研制[D]. 长春: 吉林大学通信工程学院, 2018.
Li Geng-yao. Development of ultrasonic snow depth measurement system[D]. Changchun: College of Communication Engineering, Jilin University, 2018.
14 陈坚, 陈红, 蔡晓霞, 等. 基于零阶统计量的Alpha稳定分布参数估计方法[J]. 电子信息对抗技术, 2017, 32(4): 26-31.
Chen Jian, Chen Hong, Cai Xiao-xia, et al. Alpha stable distribution parameter estimation based on Zero-order statistics[J]. Electronic Information Warfare Technology, 2017, 32(4): 26-31.
15 邱天爽, 张旭秀, 李小兵. 统计信号处理: 非高斯信号处理及其应用[M]. 北京: 电子工业出版社, 2004.
16 Gonzalez J G, Paredes J L, Arce G R. Zero-order statistics: a mathematical framework for the processing and characterization of very impulsive signals[J]. IEEE Transactions on Signal Processing, 2006, 54: 3839-3851.
17 郑作虎, 王首勇. 复杂海杂波背景下分数低阶匹配滤波检测方法[J]. 电子学报, 2016, 44(2): 319-326.
Zheng Zuo-hu, Wang Shou-yong. Radar target detection method of fractional lower order matched filter in complex sea clutter background[J]. Acta Electronica Sinica, 2016, 44(2): 319-326.
[1] 李伟,陈剑,陶善勇. 自适应耦合周期势系统随机共振信号增强方法[J]. 吉林大学学报(工学版), 2021, 51(3): 1091-1096.
[2] 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985.
[3] 刘鲁涛,李娜. 基于互质阵列的信源数估计[J]. 吉林大学学报(工学版), 2019, 49(3): 986-993.
[4] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[5] 关济实, 石要武, 邱建文, 单泽彪, 史红伟. α稳定分布特征指数估计算法[J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[6] 邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋. 无平衡点分数阶混沌系统全状态自适应控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[7] 孙晓颖, 刘壮, 秦宇镝, 刘妍妍. 可硬件系统实现的多频近场源定位方法[J]. 吉林大学学报(工学版), 2016, 46(6): 2080-2086.
[8] 石屹然, 赵晓晖, 李新波, 石要武. α噪声背景下基于标准归一化相关函数的谐波信号频率估计的MUSIC方法[J]. 吉林大学学报(工学版), 2016, 46(3): 923-928.
[9] 田雅男, 李月, 林红波, 徐学纯. 基于频域正则维纳滤波的地震随机噪声压制[J]. 吉林大学学报(工学版), 2015, 45(6): 2043-2048.
[10] 田宝凤, 王悦, 张健, 吴佩霖, 周媛媛. 核磁共振测深环境电磁噪声测试系统的设计及实现[J]. 吉林大学学报(工学版), 2015, 45(6): 2034-2042.
[11] 燕学智, 陈磊, 刘国红, 刘妍妍. 远近场混合循环平稳信源定位方法[J]. 吉林大学学报(工学版), 2014, 44(5): 1474-1480.
[12] 李静1, 王子涵1, 秦民2, 禚帅帅1, 曹振1. 基于SimScape的半主动悬架垂直速度处理电路设计[J]. 吉林大学学报(工学版), 2014, 44(4): 912-917.
[13] 吴晓岚, 王世刚, 纪腾飞. 采样技术在基于DSP的视频对象提取中的应用[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 217-220.
[14] 王金芳, 虢明. 指数函数规整群时延的VAD特征研究[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 435-439.
[15] 刘丽伟, 马松全, 马丽蓉. 基于双DSP立体测距系统的设计与实现[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 335-339.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!