吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (3): 641-649.doi: 10.13229/j.cnki.jdxbgxb.20220563
• 车辆工程·机械工程 • 上一篇
张成春1,2(),辛振涛1,2,于海3(),吴玉峰4,孙潇伟1,2,杜天宇1,2
Cheng-chun ZHANG1,2(),Zhen-tao XIN1,2,Hai YU3(),Yu-feng WU4,Xiao-wei SUN1,2,Tian-yu DU1,2
摘要:
采用电加热喷雾冷却减阻试验台,系统研究了喷雾流量、喷雾倾角、气流温度、气流速度影响发动机排气系统减阻性能的规律;采用基于离散相模型(DPM)的数值模拟,阐释了喷雾冷却大幅降低排气阻力的原因。研究结果表明:喷雾流量为12~24 mL/s时,减阻率随喷雾流量的增加而增大;喷雾倾角由45°增加至90°时,减阻率先保持不变后减小,45°和60°喷雾倾角时的减阻效果均为最佳;气流温度为200~300 ℃时,随着气流温度的升高,减阻率呈增大趋势;气流速度由20 m/s增大至30 m/s时,减阻率逐渐下降。排气系统喷雾后阻力大幅度减小的原因是喷雾后气流速度降低,湍流强度降低,局部阻力和摩擦阻力显著减小。
中图分类号:
1 | Ma Ze-tai, Gu Yun-cheng, Zhu Si-peng, et al. Analysis on capability of power recovery of marine diesel engine at high backpressure conditions[J]. Applied Thermal Engineering, 2022, 204: No. 117933. |
2 | Ebrahimnataj M R, Tiji A E, Eisapour M, et al. The effect of soot accumulation and backpressure of an integrated after-treatment system on diesel engine performance[J]. Journal of Thermal Analysis and Calorimetry, 2021, 147: 8435-8443. |
3 | Sapra H, Godjevac M, Visser K, et al. Experimental and simulation-based investigations of marine diesel engine performance against static back pressure[J]. Applied Energy, 2017, 204: 78-92. |
4 | Dziubak T, Boruta G. Experimental and theoretical research on pressure drop changes in a two-stage air filter used in tracked vehicle engine[J]. Separations, 2021, 8(6): No.71. |
5 | Sivaram A R, Rajavel R, Jayakumar N, et al. Exhaust back pressure effect on the performance features of a diesel engine[J]. ARPN Journal of Engineering and Applied Sciences, 2017, 12: 5353-5356. |
6 | Xin Zhe, Wang Shunxi, Zhang Yin, et al. Pressure loss of urea-SCR converter and its influence on diesel engine performance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 169-173. |
7 | Shabnam R A. Geometry mediated drag reduction using riblets and wrinkled surface textures[D]. Cambridge: Massachusetts Institute of Technology, 2018. |
8 | Rong Wan-ting, Zhang Hai-feng, Mao Zhi-gang, et al. Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622: No. 126712. |
9 | 许浩然. 形状、结构耦元对排气管减阻性能影响 [D]. 长春:吉林大学材料科学与工程学院,2015. |
Xu Hao-ran. Influence of shape and structure coupling elements on drag reduction performance of exhaust pipe[D]. Changchun: School of Materials Science and Engineering, Jilin University, 2015. | |
10 | Xu Jian-min, Zhou Shui-ting, Li Kun-sheng. Analysis of flow field and pressure loss for fork truck muffler based on the finite volume method[J]. International Journal of Heat and Technology, 2015, 33(3): 85-90. |
11 | Pangavhane S D, Ubale A, Tandon V, et al. Experimental and CFD analysis of a perforated inner pipe muffler for the prediction of backpressure[J]. International Journal of Engineering & Technology, 2013, 5(5): 115-119. |
12 | Lee S J, Jang Y G. Control of flow around a NACA 0012 airfoil with a micro-riblet film[J]. Journal of Fluids and Structures, 2005, 20(5): 659-672. |
13 | Viswanath P R. Aircraft viscous drag reduction using riblets[J]. Progress in Aerospace Sciences, 2002, 38(6/7): 571-600. |
14 | 田丽梅, 王养俊, 李子源, 等. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报: 工学版, 2017, 47(4): 1179-1184. |
Tian Li-mei, Wang Yang-jun, Li Zi-yuan, et al. Development of drag-reduction test system of bionic functional surfaces with internal flow[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1179-1184. | |
15 | Liu Gui-jie, Yuan Zi-chao, Qiu Zhao-zun, et al. A brief review of bio-inspired surface technology and application toward underwater drag reduction[J]. Ocean Engineering, 2020, 199: No. 106962. |
16 | Tian Gui-zhong, Zhang Yao-sheng, Feng Xiao-ming, et al. Focus on bioinspired textured surfaces toward fluid drag reduction: recent progresses and challenges[J]. Advanced Engineering Materials, 2022, 24(1): No. 2100696. |
17 | Prajapati V D, Desai A J. Design and analysis of automotive muffler[J]. International Journal of Engineering Research & Technology (IJERT), 2016, 5(5): 384-389. |
18 | Sayinci B. Effect of strainer type, spray pressure, and orifice size on the discharge coefficient of standard flat-fan nozzles[J]. Turkish Journal of Agriculture and Forestry, 2015, 39(5): 692-704. |
19 | Payri R, Bracho G, Gimeno J, et al. Investigation of the urea-water solution atomization process in engine exhaust-like conditions[J]. Experimental Thermal and Fluid Science, 2019, 108: 75-84. |
20 | Zhang Hai-bin, Bai Bo-feng, Liu Li, et al. Droplet dispersion characteristics of the hollow cone sprays in crossflow[J]. Experimental Thermal and Fluid Science, 2013, 45: 25-33. |
21 | Sun Y B, Guan Z Q, Hal G, et al. Investigation on the influence of injection direction on the spray cooling performance in natural draft dry cooling tower[J]. International Journal of Heat and Mass Transfer, 2017, 110: 113-131. |
22 | Gao Ran, Liu Kai-kai, Li An-gui, et al. Biomimetic duct tee for reducing the local resistance of a ventilation and air-conditioning system[J]. Building and Environment, 2018, 129: 130-141. |
23 | Eggels J G M, Unger F, Weiss M H, et al. Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment[J]. Journal of Fluid Mechanics, 1994, 268: 175-210. |
24 | Paul D. Advanced Approaches in Turbulence[M]. Netherlands: Elsevier, 2021: 161-241. |
[1] | 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753. |
[2] | 胡兴军,张靖龙,罗雨霏,辛俐,李胜,胡金蕊,兰巍. 冷却管结构及进气方向对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(6): 1933-1942. |
[3] | 张斌,程国赞,洪昊岑,赵春晓,杨华勇. 基于计算流体仿真的双作用叶片泵气蚀机理分析[J]. 吉林大学学报(工学版), 2021, 51(3): 831-839. |
[4] | 陈鑫,阮新建,李铭,王宁,王佳宁,潘凯旋. 基于大涡模拟的离散格式改进方法及应用[J]. 吉林大学学报(工学版), 2019, 49(6): 1756-1763. |
[5] | 施卫平,赵旭,胡兴军,余天明,柳博文,段彦. 天然气开采阻水装置AICD的设计和数值模拟[J]. 吉林大学学报(工学版), 2019, 49(6): 1986-1991. |
[6] | 胡兴军,惠政,郭鹏,张扬辉,张靖龙,王靖宇,刘飞. 基于流固耦合的汽车气动特性[J]. 吉林大学学报(工学版), 2019, 49(5): 1414-1419. |
[7] | 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751. |
[8] | 田丽梅, 王养俊, 李子源, 商延赓. 仿生功能表面内流减阻测试系统的研制[J]. 吉林大学学报(工学版), 2017, 47(4): 1179-1184. |
[9] | 赵刚, 李照远, 赵华兴, 饶宇, 李芳, 刘文博. 外旋立式射流减阻测试平台研制及实验[J]. 吉林大学学报(工学版), 2016, 46(4): 1175-1181. |
[10] | 李芳, 赵刚, 刘维新, 孙壮志. 多孔仿生射流表面减阻特性数值模拟[J]. 吉林大学学报(工学版), 2014, 44(6): 1698-1703. |
[11] | 韦甘, 杨志刚, 李启良. 基于分步遗传算法的车身气动优化[J]. 吉林大学学报(工学版), 2014, 44(6): 1578-1582. |
[12] | 田丽梅, 商震, 胡国梁, 李楠. 基于形态仿生的轿车升阻特性的数值模拟[J]. 吉林大学学报(工学版), 2014, 44(5): 1283-1289. |
[13] | 刘光洁, 徐涛, 李俊楼, 于征磊, 修航, 程飞. 燃气轮机过渡段双腔室模型设计及优化[J]. 吉林大学学报(工学版), 2014, 44(5): 1360-1365. |
[14] | 王骥月,丛茜,齐欣,张琰. 基于蝉口针形态的仿生针头结构优化设计及减阻机理分析[J]. 吉林大学学报(工学版), 2014, 44(3): 696-700. |
[15] | 田丽梅, 高志桦, 王银慈, 任露泉, 商震. 形态/柔性材料二元仿生耦合增效减阻功能表面的设计与试验[J]. 吉林大学学报(工学版), 2013, 43(04): 970-975. |
|