吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (3): 771-784.doi: 10.13229/j.cnki.jdxbgxb.20220530

• 计算机科学与技术 • 上一篇    

多策略改进麻雀搜索算法优化三维DV-Hop节点定位

段中兴(),刘瑞兴,刘冲   

  1. 西安建筑科技大学 信息与控制工程学院,西安 710055
  • 收稿日期:2022-05-06 出版日期:2024-03-01 发布日期:2024-04-18
  • 作者简介:段中兴(1969),男,博士,教授.研究方向:智能信息处理与智能控制.E-mail:zhx_duan@163.com
  • 基金资助:
    国家自然科学基金项目(62103316)

3DDV⁃Hop node localization optimized based on multi⁃strategy improved sparrow search algorithm

Zhong-xing DUAN(),Rui-xing LIU,Chong LIU   

  1. College of Information and Control Engineering,Xi′an University of Architecture and Technology,Xi′an 710055,China
  • Received:2022-05-06 Online:2024-03-01 Published:2024-04-18

摘要:

为进一步提升传统3DDV-Hop算法的定位精度和稳定性,提出了一种利用多策略改进麻雀搜索算法(MISSA)优化3DDV-Hop的定位算法(MISSA-3DDV-Hop)。首先,采用通信半径分级方法细化多通信半径定位节点的跳数值,提高了最小跳数计算的准确性。然后,利用跳距误差与估计距离误差的加权平均值修正节点间的平均跳距,降低了信标节点与未知节点之间的距离估算误差。最后,采用麻雀搜索算法实现3DDV-Hop算法未知节点的位置寻优,并引入佳点集和发现者-跟随者自适应调整策略,通过建立误差适应度函数和目标函数,增强麻雀搜索算法初始种群的分布性和多样性以及全局收敛速度和局部寻优能力。仿真结果表明,与传统3DDV-Hop、IPSO-3DDV-Hop和IGA-3DDV-Hop算法相比,本文方法具有更高的定位精度,更好的稳定性和更快的收敛速度。

关键词: 通信技术, 无线传感网络, 3DDV-Hop, 多策略麻雀搜索算法, 平均跳距, 佳点集

Abstract:

To enhance the node localization accuracy and stability of the tradition three-dimensional DV-Hop (3DDV-Hop) algorithm in wireless sensor network (WSN), a 3DDV-Hop positioning optimization algorithm based on the improved multi strategy sparrow search algorithm (MISSA-3DDV-Hop) was proposed. Firstly, a communication radius classification method was used in the anchor nodes to refine the hop value of positioning nodes, which improves the accuracy of the calculation of the minimum hop number. Then the weighted average of hop distance error and estimated distance error was applied to correct the average hop distance between nodes, so as to reduce the distance estimation error between anchor nodes and unknown nodes. Finally, the sparrow search algorithm was used to optimize the location of unknown nodes in 3DDV-Hop algorithm, and the good-point set and discoverer-follower adaptive adjustment strategy were introduced. By establishing the error fitness function and objective function, the distribution and diversity of the initial population, global convergence speed and local optimization ability of sparrow search algorithm were enhanced. The simulation results show that the improved algorithm effectively improves the positioning accuracy and convergence speed compared with the traditional 3DDV-Hop, IPSO-3DDV-Hop and IGA-3DDV-Hop algorithms.

Key words: communication technology, wireless sensor network, 3DDV-Hop, multi-strategy sparrow search algorithm, average hop distance, good point set

中图分类号: 

  • TP393

图1

三维DV-Hop定位模型"

图2

网络节点结构示意图"

图3

三维多通信半径模型"

图4

初始化结果对比"

表1

麻雀搜索算法参数初始化"

参数数值
种群数量N100
迭代次数tmax200
安全阈值ST0.8
比例系数γ0.1
扰动偏离因子α0.1

表2

网络参数初始化"

参数数值
网络区域大小V/m3100×100×100
通信半径R/m30
节点总数NA/个200
信标节点BA/个60
未知节点UNA/个140
初始跳数h0
循环次数loop500
节点能量充足
节点分布随机分布

图5

实验环境场景构建"

图6

通信半径对定位误差的影响"

图7

四种算法在3个场景下的归一化定位误差"

图8

节点数量对定位误差的影响"

图9

四种算法在3个场景中的平均归一化定位误差"

图10

信标节点数量对定位误差的影响"

图11

四种算法在3个场景中的平均归一化定位误差"

图12

多因素不同场景对比"

1 Wang C, Shen X, Wang H, et al. Energy-efficient collection scheme based on compressive sensing in underwater wireless sensor networks for environment monitoring over fading channels[J]. Digital Signal Processing, 2022, 127: No.103530.
2 Hariyawan M Y, Gunawan A, Putra E H, et al. Wireless sensor network for forest fire detection[J]. Procedia Computer Science, 2020, 175: 435-440.
3 Sofi A, Regita J J, Rane B, et al. Structural health monitoring using wireless smart sensor network—an overview[J]. Mechanical Systems and Signal Processing, 2022, 163: No. 108113.
4 Plageras A P, Psannis K E, Stergiou C, et al. Efficient IoT-based sensor BIG Data collection–processing and analysis in smart buildings[J]. Future Generation Computer Systems, 2018, 82(1): 349-357.
5 Xue D. Research of localization algorithm for wireless sensor network based on DV-Hop[J]. Journal of Wireless Communications and Networking, 2019(1): 1-8.
6 Halder S, Ghosal A. A survey on mobile anchor assisted localization techniques in wireless sensor networks[J]. Wireless Networks, 2016, 22(7): 2317-2336.
7 程超, 钱志鸿, 付彩欣, 等. 一种基于误差距离加权与跳段算法选择的遗传优化DV-Hop定位算法[J]. 电子与信息学报, 2015, 37(10): 2418-2423.
Cheng Chao, Qian Zhi-hong, Fu Cai-xin, et al. Genetic optimization DV-Hop localization algorithm based on error distance weighted and hop algorithm selection[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2418-2423.
8 程杰, 董云玲, 陈嘉兴, 等. 一种具有连续跳数值的三维DV-Hop改进算法[J]. 电子学报, 2020, 48(11): 2122-2130.
Cheng Jie, Dong Yun-ling, Chen Jia-xing, et al. An improved three-dimensional DV-Hop algorithm with continuous hop value[J]. Acta Electronica Sinica, 2020, 48(11): 2122-2130.
9 李文军, 华强, 谭立东, 等. DV-HOP和接收信号强度指示结合的改进算法[J]. 吉林大学学报: 工学版, 2019, 49(5): 1689-1695.
Li Wen-jun, Hua Qiang, Tan Li-dong, et al. An improved algorithm for combination of DV-HOP and RSSI[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1689-1695.
10 Cui Z, Sun B, Wang G, et al. A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems[J]. Journal of Parallel and Distributed Computing, 2017, 103: 42-52.
11 蒋俊正, 李杨剑, 赵海兵, 等. 一种大规模传感器网络节点分布式定位算法[J]. 电子与信息学报, 2019, 41(12): 3022-3028.
Jiang Jun-zheng, Li Yang-jian, Zhao Hai-bin, et al. A distributed node localization algorithm for large scale sensor networks[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3022-3028.
12 Huang X, Han D, Cui M, et al. Three-dimensional localization algorithm based on improved A* and DV-Hop algorithms in wireless sensor network[J]. Sensors, 2021, 21(2): No. 448.
13 苟平章, 刘学治, 孙梦源, 等. 基于多通信半径和跳距加权的WSNs三维迭代定位算法[J]. 传感技术学报, 2020, 33(1): 116-122.
Gou Ping-zhang, Liu Xue-zhi, Sun Meng-yuan, et al. A 3d iterative location algorithm for WSNs based on multiple communication radius and hop distance weighting[J]. Chinese Journal of Sensors and Actuators, 2020, 33(1): 116-122.
14 余修武, 黄露平, 刘永, 等. 遗传-禁忌搜索优化的三维DV-Hop定位算法[J]. 北京邮电大学学报, 2021, 44(4): 75-81.
Yu Xiu-wu, Huang Lu-ping, Liu Yong, et al. Three-dimensional DV-Hop location algorithm based on genetic-tabu search optimization in WSN[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 75-81.
15 Song L, Zhao L, Ye J. DV-hop node location algorithm based on GSO in wireless sensor networks[J]. Journal of Sensors, 2019(1): No.2986954.
16 唐德红, 王一多, 马新国. 斯蒂芬森迭代改进DV-Hop的无线传感器节点定位[J]. 吉林大学学报: 工学版, 2022, 52(12): 3015-3021.
Tang De-hong, Wang Yi-duo, Ma Xin-guo, et al. Sensor node localization mechanism based on improved DV-Hop algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12): 3015-3021.
17 刘学治. 基于DV-Hop的三维WSNs节点定位算法优化研究[D]. 兰州: 西北师范大学计算机科学与工程学院, 2021.
Liu Xue-zhi. Optimization of 3D WSNs node localization algorithm based on DV-Hop[D]. Lanzhou: College of Computer Science and Engineering of Northwest Normal University, 2021.
18 Xue J, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020(8): 22-34.
19 付华, 刘昊. 多策略融合的改进麻雀搜索算法及其应用[J].控制与决策, 2022, 37(1): 87-96.
Fu Hua, Liu Hao. Improved sparrow search algorithm with multi-strategy integration and its application[J]. Control and Decision, 2022, 37(1): 87-96.
20 吕鑫, 慕晓冬, 张钧. 基于改进麻雀搜索算法的多阈值图像分割[J]. 系统工程与电子技术, 2021, 43(2): 318-327.
Lv Xin, Mu Xiao-dong, Zhang Jun. Multi-threshold image segmentation based on improved sparrow search algorithm[J]. Systems Engineering and Electronics, 2021, 43(2): 318-327.
21 Hu G, Zhong J, Du B, et al. An enhanced hybrid arithmetic optimization algorithm for engineering applications[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: No. 114901.
22 唐延强, 李成海, 宋亚飞, 等. 自适应变异麻雀搜索优化算法[J]. 北京航空航天大学学报, 2023, 49(3): 681-692.
Tang Yan-qiang, Li Cheng-hai, Song Ya-fei, et al. Adaptive mutation sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 681-692.
23 Zhao S, Wang P, Heidari A A, et al. An enhanced Cauchy mutation grasshopper optimization with trigonometric substitution: engineering design and feature selection[J]. Engineering with Computers, 2021, 38(5): 4583-4616.
24 Li Y, Han M, Guo Q. Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization[J]. KSCE Journal of Civil Engineering. 2020(24): 3703-3713.
25 余修武, 黄露平, 刘永, 等. 融合柯西折射反向学习和变螺旋策略的WSN象群定位算法[J]. 控制与决策, 2022, 37(12): 3183-3819.
Yu Xiu-wu, Huang Lu-ping, Liu Yong, et al. Cauchy refraction opposition-based learning and variable helix mechanism of elephant herding localization algorithm in WSN[J]. Control and Decision, 2022, 37(12): 3183-3819.
26 Galeev R R, Saveliev A A, Galeeva E V, et al. Application of the normalized relative error distribution analysis for non-destructive quality control of drugs by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2019(50): 1614-1623.
27 Phoemphon S, So-In C, Leelathakul N. Optimized hop angle relativity for DV-Hop localization in wireless sensor networks[J]. IEEE Access, 2018(6): 78149-78172.
28 Cai X, Wang P, Du L, et al. Multi-objective three-dimensional DV-hop localization algorithm with NSGA-Ⅱ‍[J]. IEEE Sensors Journal, 2019, 19(21): 10003-10015.
[1] 段锦,姚安妮,王震,于林韬. 改进的麻雀搜索算法优化无线传感器网络覆盖[J]. 吉林大学学报(工学版), 2024, 54(3): 761-770.
[2] 葛动元,向文江,李健,刘恩辰,姚锡凡. 基于机器视觉的电动汽车充电自动定位方法[J]. 吉林大学学报(工学版), 2023, 53(12): 3465-3471.
[3] 周杰,王学英,陈钱,罗宏,徐蕾. 基于函数拟合AoA任意分布的MIMO信道特征分析[J]. 吉林大学学报(工学版), 2023, 53(10): 2994-3006.
[4] 国强,崔玉强,王勇. 无线传感器网络中基于动态簇的节点调度算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1466-1476.
[5] 李建坡,李美霖,杨涛,薛鹏. 大规模MIMO⁃OFDM系统中低复杂度维纳滤波信道估计算法[J]. 吉林大学学报(工学版), 2022, 52(1): 211-218.
[6] 李建坡,薛鹏,杨涛,李美霖. 基于分组导频复用的大规模多输入多输出系统导频污染抑制方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2225-2236.
[7] 孙大洋,王雪莹,韩双雪,钟辉,戴江南. 虚拟锚点高维坐标的非视距识别及定位优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2207-2215.
[8] 马彦,黄健飞,赵海艳. 基于车间通信的车辆编队控制方法设计[J]. 吉林大学学报(工学版), 2020, 50(2): 711-718.
[9] 刘毅,肖玲玲,王改静,张武军. 基于联合优化的D2D资源分配算法[J]. 吉林大学学报(工学版), 2020, 50(1): 306-314.
[10] 李翠然,于永生,谢健骊. 基于次用户优先级的频谱共享动态博弈算法[J]. 吉林大学学报(工学版), 2020, 50(1): 315-323.
[11] 王金鹏,叶政鹏,曹帆,邹念育. 5G移动通信中基于同频干扰分布的协同分布式天线传输系统[J]. 吉林大学学报(工学版), 2020, 50(1): 333-341.
[12] 王洪雁,房云飞,朱圣棋,裴炳南. 非均匀噪声条件下考虑互耦效应的DOA估计方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1706-1714.
[13] 李文军,华强,谭立东,孙悦. DV⁃HOP和接收信号强度指示结合的改进算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1689-1695.
[14] 刘勇,邓方顺,刘小林,闵思婕,王鹏. 基于双混沌振子的最小频移键控信号频率估计方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1357-1362.
[15] 王宏志,姜方达,周明月. 基于遗传粒子群优化算法的认知无线电系统功率分配[J]. 吉林大学学报(工学版), 2019, 49(4): 1363-1368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!