吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (8): 2187-2196.doi: 10.13229/j.cnki.jdxbgxb.20221374

• 交通运输工程·土木工程 • 上一篇    下一篇

基于车路协同的交通瓶颈路段车流动态分配机制及模型

曲大义(),刘浩敏,杨子奕,戴守晨   

  1. 青岛理工大学 机械与汽车工程学院,山东 青岛 266525
  • 收稿日期:2022-10-27 出版日期:2024-08-01 发布日期:2024-08-30
  • 作者简介:曲大义(1973-),男,教授,博士. 研究方向:车路协同与安全控制.E-mail:dyqu@263.net
  • 基金资助:
    国家自然科学基金项目(52272311)

Dynamic allocation mechanism and model of traffic flow in bottleneck section based on vehicle infrastructure cooperation

Da-yi QU(),Hao-min LIU,Zi-yi YANG,Shou-chen DAI   

  1. School of Mechanical & Automotive Engineering,Qingdao University of Technology,Qingdao 266525,China
  • Received:2022-10-27 Online:2024-08-01 Published:2024-08-30

摘要:

针对快速路瓶颈路段存在大量的车道变换行为而造成的交通拥堵问题,以快速路交织区这一交通流频变区域为例,分析其车路协同运行特征,建立了交通瓶颈路段车流动态分配模型,采用C-V2X、边缘计算等技术,设计基于车路协同的车流动态分配系统,研究其运行机制。运用MATLAB元胞传输模型仿真分析了车流分配系统,仿真结果表明:动态分配系统优化效果明显,在同步流状态下通行时间缩短11.4%左右,拥堵流状态下通行时间缩短幅度可达39.7%。研究结果对减少快速路交织瓶颈区域的运行延误,提高车流运行效率和快速路通行能力具有重要意义。

关键词: 交通运输规划与管理, 交通瓶颈, 交通流特性, 车路协同系统, 动态交通分配

Abstract:

In response to the traffic congestion caused by a large number of lane-changing behaviors in bottleneck sections of expressways, taking the weaving section of expressway as an example, which is a frequency variable area of traffic flow, this paper analyzes the characteristics of vehicle infrastructure cooperation operation, establishes a dynamic assignment model of traffic flow in the bottleneck section, uses C-V2X, edge computing and other technologies, designs a dynamic allocation system of vehicle flow based on vehicle infrastructure cooperation, and studies its operation mechanism. The traffic flow allocation system is simulated and analyzed using MATLAB cellular transmission model. The simulation results show that the optimization effect of the dynamic allocation system is obvious. The traffic time is reduced by about 11.4% in synchronous flow state and 39.7% in congested flow state. The research results are of great significance to reduce the operation delay in the weaving bottleneck area of the expressway and improve the traffic flow efficiency and expressway capacity.

Key words: transportation planning and management, traffic bottleneck, traffic flow characteristics, vehicle infrastructure cooperative system, dynamic traffic allocation

中图分类号: 

  • U491.2

表1

调查地点背景数据"

调查地点交织区长度/m通行能力/(pcu·h-1交织流量比车道数
跨海大桥快速路1号交织区4804 5000.304
跨海大桥快速路2号交织区3004 1500.114
金水快速路1号交织区4003 2500.243
杭鞍快速路1号交织区2103 0800.233

图1

车辆换道位置分布图"

图2

交通流参数相互关系"

图3

快速路交织区换道区域划分示意图"

图4

车辆换道动态分配系统运行流程"

图5

仿真路段元胞示意图"

图6

系统整体优化效果"

图7

同步流状态下的优化效果"

图8

拥堵流状态下的控制效果"

图9

智能网联车辆渗透率对优化效果的影响"

1 Wattleworth J A. Peak-period analysis and control of a freeway system[R]. Houston: Texas Transportation Institute, 1965.
2 Papageorgiou M, Hadj-Salem H, Blosseville J M. ALINEA: a local feedback control law for on -ramp metering[J]. Transportation Research Record Journal of the Transportation Research Board, 1991,1320: 58-64.
3 乔彦甫, 赵斌, 方传武, 等. 基于ALINEA算法的城市快速路匝道控制方法[J]. 西南交通大学学报, 2017, 52(5): 1001-1007.
Qiao Yan-fu, Zhao Bin, Fang Chuan-wu, et al. Study of ramp control method for urban expressways using improvised ALINEA algorithm[J]. Journal of Southwest Jiaotong University, 2017, 52(5): 1001-1007.
4 肖莹. 城市快速路匝道控制与主线可变速控制仿真研究[D]. 广州: 广东工业大学机电工程学院,2015.
Xiao Ying. Simulation of ramp control and variable speed control on urban expressway[D]. Guangzhou: School of Electromechanical Engineering, Guangdong University of Technology, 2015.
5 Li S, Cao D. Variable speed limit strategies analysis with link transmission model on urban expressway[J]. Modern Physics Letters B, 2018, 32(6): No.1850077.
6 Pasquale C, Sacone S, Siri S, et al. A multi-class model-based control scheme for reducing congestion and emissions in freeway networks by combining ramp metering and route guidance[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 384-408.
7 刘伟,陈科全,田宗忠,等. 干道交织区通行能力最大化的合流车道控制[J]. 交通运输系统工程与信息, 2019, 19(1): 55-61.
Liu Wei, Chen Ke-quan, Tian Zong-zhong, et al. Lane signal control strategy based on maximum capacity of urban arterial weaving section[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(1): 55-61.
8 Ramezani M, Ye E. Lane density optimisation of automated vehicles for highway congestion control[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 1096-1116.
9 曲大义, 韩乐潍, 林璐, 等. 面向交叉口主动安全的车路协同辅助决策系统设计[J]. 公路交通科技, 2021, 38(5): 100-108.
Qu Da-yi, Han Le-wei, Lin Lu, et al. Design of vehicle-road cooperative auxiliary decision-making system for active safety at intersections[J]. Journal of Highway and Transportation Research and Development, 2021, 38(5): 100-108.
10 贾彦峰, 曲大义, 林璐, 等. 基于运行轨迹的网联混合车流速度协调控制[J]. 吉林大学学报: 工学版, 2021, 51(6): 2051-2060.
Jia Yan-feng, Qu Da-yi, Lin Lu, et al. Coordinated speed control of connected mixed traffic flow based on trajectory[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2051-2060.
11 赵杭,赵敏,孙棣华,等. 面向快速路交通瓶颈的混合交通群体节流控制策略[J]. 交通运输工程学报, 2022, 22(3): 162-173.
Zhao Hang, Zhao Min, Sun Di-hua, et al. Mixed traffic group throttling control strategy for traffic bottleneck of expressway[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 162-173.
12 Zhang K, Qu D, Song H, et al. Analysis of lane-changing decision-making behavior and molecular interaction potential modeling for connected and automated vehicles[J]. Sustainability, 2022, 14(17):No. 141711049.
13 Wu J, Wang Y, Zhang Z, et al. A cooperative merging control method for freeway ramps in connected and autonomous driving[J]. Sustainability, 2022, 14(18): No.141811120.
14 曲大义, 黑凯先, 郭海兵, 等. 车联网环境下车辆换道博弈行为及模型[J]. 吉林大学学报: 工学版, 2022, 52(1): 101-109.
Qu Da-yi, Kai-xian Hei, Guo Hai-bing, et al. Game behavior and model of lane-changing on the internet of vehicles environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 101-109.
15 Qu D, Liu H, Song H, et al. Extraction of catastrophe boundary and evolution of expressway traffic flow state[J]. Applied Sciences, 2022, 12(12): No.12126291.
16 Verma S, Pant M, Snasel V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9: 57757-57791.
17 刘浩敏, 曲大义, 宋慧, 等. 快速路交通流状态突变边界提取及其演化规律[J]. 复杂系统与复杂性科学, 2023, 20(3): 74-81.
Liu Hao-min, Qu Da-yi, Song Hui, et al. Extraction of catastrophe boundary and evolution of expressway traffic flow state[J]. Complex Systems and Complexity Science, 2023, 20(3): 74-81.
18 钱志鸿, 田春生, 郭银景, 等. 智能网联交通系统的关键技术与发展[J]. 电子与信息学报, 2020, 42(1): 2-19.
Qian Zhi-hong, Tian Chun-sheng, Guo Yin-Jing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics & Information Technology, 2020, 42(1): 2-19.
19 常玉林, 袁才鸿, 孙超, 等. 基于改进元胞传输模型的城市路网实际阻抗计算方法[J]. 吉林大学学报: 工学版, 2020, 50(1): 132-139.
Chang Yu-lin, Yuan Cai-hong, Sun Chao, et al. Calculation method for actual impedance of urban network based[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 132-139.
[1] 闫云娟,查伟雄,石俊刚,严丽平. 基于随机充电需求的充电桩优化双层模型[J]. 吉林大学学报(工学版), 2024, 54(8): 2238-2244.
[2] 温晓岳,钱国敏,孔桦桦,缪月洁,王殿海. TrafficPro:一种针对城市信控路网的路段速度预测框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2214-2222.
[3] 陈桂珍,程慧婷,朱才华,李昱燃,李岩. 考虑驾驶员生理信息的城市交叉口风险评估方法[J]. 吉林大学学报(工学版), 2024, 54(5): 1277-1284.
[4] 赵晓华,刘畅,亓航,欧居尚,姚莹,郭淼,杨海益. 高速公路交通事故影响因素及异质性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 987-995.
[5] 杨秀建,贾晓寒,张生斌. 考虑汽车队列动态特性的混合交通流特性[J]. 吉林大学学报(工学版), 2024, 54(4): 947-958.
[6] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[7] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[8] 王殿海,胡佑薇,蔡正义,曾佳棋,姚文彬. 基于BPR函数的城市道路间断流动态路阻模型[J]. 吉林大学学报(工学版), 2023, 53(7): 1951-1961.
[9] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[10] 胡莹,邵春福,王书灵,蒋熙,孙海瑞. 基于共享单车骑行轨迹的骑行质量识别方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1040-1046.
[11] 王占中,蒋婷,张景海. 基于模糊双边界网络模型的道路运输效率评价[J]. 吉林大学学报(工学版), 2023, 53(2): 385-395.
[12] 杨敏,张聪伟,李大韦,马晨翔. 基于贝叶斯网的空铁联程乘客出行满意度模型[J]. 吉林大学学报(工学版), 2023, 53(10): 2839-2846.
[13] 秦严严,杨晓庆,王昊. 智能网联混合交通流CO2排放影响及改善方法[J]. 吉林大学学报(工学版), 2023, 53(1): 150-158.
[14] 闫云娟,查伟雄,石俊刚,李剑. 具有随机充电需求的混合动态网络平衡模型[J]. 吉林大学学报(工学版), 2022, 52(1): 136-143.
[15] 户佐安,夏一鸣,蔡佳,薛锋. 延误条件下综合多种策略的城轨列车运行调整优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1664-1672.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .