吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (8): 2301-2306.doi: 10.13229/j.cnki.jdxbgxb.20230235
摘要:
针对因光照不均导致图像灰度值分布不均、噪声大、视觉传达效果差等问题,提出基于视觉信息补偿的光照不均图像增强方法。计算图像中不同目标和背景区域的像素灰度值,构建灰度衰减序列,构建衰减函数对最弱像素点周围的每一个背景点进行加权处理,采用同态滤波函数根据图像中光线的分量值变化去噪。采用视觉信息补偿法计算图中每个区域的像素值,并转换为分量值模式,按照亮度总量值和局部值进行互补增强。实验数据表明:本文方法增强效果佳,图像清晰度得到了提高,细节刻画效果好。
中图分类号:
1 | 刘卫东, 李吉玉, 张文博, 等. 基于Retinex和ADMM优化的水下光照不均匀图像增强算法[J].西北工业大学学报, 2021, 39(4): 824-830. |
Liu Wei-dong, Li Ji-yu, Zhang Wen-bo, et al. Underwater illumination nonuniform image enhancement algorithm based on Retinex and ADMM optimization[J]. Journal of Northwest University of Technology, 2021,39(4): 824-830. | |
2 | 贾洪博, 石蕴玉, 刘翔, 等. 基于光照重映射的低照度图像增强算法[J]. 激光与光电子学进展, 2021, 58(22): 230-236. |
Jia Hong-bo, Shi Yun-yu, Liu Xiang, et al. Low-illuminance image enhancement algorithm based on light remapping[J]. Progress in Laser and Optoelectronics, 2021, 58(22): 230-236. | |
3 | 钱宇华, 卢佳佳, 王克琪, 等. 基于信息多重蒸馏的轻量化低照度图像增强方法[J]. 山西大学学报: 自然科学版, 2021, 44(5): 887-896. |
Qian Yu-hua, Lu Jia-jia, Wang Ke-qi, et al. Light and low illumination image enhancement method based on information multiple distillation[J]. Journal of Shanxi University (Natural Science Edition), 2021,44(5): 887-896. | |
4 | 耿磊, 史瑞资, 刘彦北, 等. 基于多重感受野UNet的仪表图像分割方法[J].计算机工程与设计, 2022, 43(3): 771-777. |
Geng Lei, Shi Rui-zi, Liu Yan-bei, et al. Instrument image segmentation method based on multiple receptive field UNet[J]. Computer Engineering and Design, 2022, 43(3): 771-777. | |
5 | 黄子蒙, 徐望明, 但愿. 基于对称亮度映射和虚拟多曝光融合的非均匀光照图像增强[J]. 液晶与显示, 2022, 37(12): 1580-1589. |
Huang Zi-meng, Xu Wang-ming, Dan Yuan. Non-uniform illumination image enhancement based on symmetric brightness mapping and virtual multi-exposure fusion[J]. Liquid Crystal and Display, 2022, 37(12): 1580-1589. | |
6 | 蒲恬, 张子夜, 彭真明. 保持自然度的非均匀光照图像增强的Retinex算法[J]. 数据采集与处理, 2021, 36(1): 76-84. |
Pu Tian, Zhang Zi-ye, Peng Zhen-ming. Retinex algorithm for image enhancement under non-uniform illumination with naturalness[J]. Data Acquisition and Processing, 2021,36(1): 76-84. | |
7 | 张志文, 刘天歌, 聂鹏举. 基于实景数据增强和双路径融合网络的实时街景语义分割算法[J]. 电子学报, 2022, 50(7): 1609-1620. |
Zhang Zhi-wen, Liu Tian-ge, Nie Peng-ju. Real-time street scene semantic segmentation algorithm based on real-time data enhancement and dual-path fusion network[J]. Journal of Electronics, 2022, 50 (7): 1609-1620. | |
8 | 吴建斌, 牛玉贞, 张宇杰. 基于图像自身信息感知的无参考低光照图像增强[J]. 小型微型计算机系统, 2021, 42(6): 1243-1249. |
Wu Jian-bin, Niu Yu-zhen, Zhang Yu-jie. Unreferenced low-light image enhancement based on image information perception[J]. Miniature Microcomputer System, 2021, 42(6): 1243-1249. | |
9 | 王宇龙, 王然风, 曹文艳. 等 , 联合CLAHE和BM3D的浮选泡沫图像预处理方法[J]. 煤炭技术, 2022, 41(6):222-224. |
Wang Yu-long, Wang Ran-feng, Cao Wen-yan, et al. The flotation foam image pre-processing method combined with CLAHE and BM3D[J]. Coal Technology, 2022,41(6): 222-224. | |
10 | 翟艳, 潘振宽, 魏伟波. 基于法矢量雅可比的总广义变差图像修复模型[J]. 计算机仿真, 2022, 39(3):150-199. |
Zhai Yan, Pan Zhen-kuan, Wei Wei-bo. A total generalized variation model for image inpainting using the jacobian of normal[J]. Computer Simulation, 2022, 39(3):150-199. | |
11 | Wang J, Wang X, Zhang P, et al. Correction of uneven illumination in color microscopic image based on fully convolutional network[J]. Optics Express, 2021, 29(18):28503-28520. |
12 | Xu J J, Zhang H, Tang C S, et al. Automatic soil crack recognition under uneven illumination condition with the application of artificial intelligence[J]. Engineering Geology,2022(296): 106495. |
13 | Li B, Xie W, Zhang L W, et al. Adaptive fractional differential algorithm for image edge enhancement and texture preserve using fuzzy sets[J]. IET Image Processing,2023,17(7):2204-2213. |
14 | He L, Liu S X, Long W, et al. Low-light image enhancement via span correction function and discrete mapping model[J]. IET Image Processing,2023,17(6):1812-1836. |
15 | Liao T L, Peng C Y, Hou Y Y. Application of multi-party computation and error correction with image enhancement and convolution neural networks based on cloud computing[J]. IET Image Processing,2023,17(6):1931-1950. |
16 | Yang L, Yang B, Gu X. Adversarial reconstruction CNN for illumination-robust frontal face image recovery and recognition[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2021, 15(2):18-33. |
17 | 肖明尧, 李雄飞, 朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报: 工学版, 2023, 53(9): 2640-2648. |
Xiao Ming-yao, Li Xiong-fei, Zhu rui. Medical image fusion based on pixel correlation analysis in NSST domain[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9):2640-2648. | |
18 | 陈烽, 王浩. 基于多通道视觉注意力的模糊图像质量复原算法设计[J]. 吉林大学学报: 工学版, 2023, 53(9): 2626-2631. |
Chen Feng, Wang Hao. Design of fuzzy image quality restoration algorithm based on multi⁃channel visual attention[J].Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9):2626-2631. | |
19 | He L, Long W, Liu S, et al. A night low‐illumination image enhancement model based on small probability area filtering and lossless mapping enhancement[J]. IET Image Processing, 2021, 15(13): 3221-3238. |
20 | Acharya U K, Kumar S. Image sub-division and quadruple clipped adaptive histogram equalization (ISQCAHE) for low exposure image enhancement[J]. Multidimensional Systems and Signal Processing,2023, 34(1): 25-45. |
[1] | 张锦洲,姬世青,谭创. 融合卷积神经网络和双边滤波的相贯线焊缝提取算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2313-2318. |
[2] | 王德兴,高凯,袁红春,杨钰锐,王越,孔令栋. 基于色彩校正和TransFormer细节锐化的水下图像增强[J]. 吉林大学学报(工学版), 2024, 54(3): 785-796. |
[3] | 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896. |
[4] | 蒋华伟,杨震,张鑫,董前林. 图像去雾算法研究进展[J]. 吉林大学学报(工学版), 2021, 51(4): 1169-1181. |
[5] | 刘富,刘璐,侯涛,刘云. 基于优化MSR的夜间道路图像增强方法[J]. 吉林大学学报(工学版), 2021, 51(1): 323-330. |
[6] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[7] | 吴一全, 吴诗婳, 张宇飞. 基于混沌粒子群优化的Contourlet域红外图像自适应增强[J]. 吉林大学学报(工学版), 2014, 44(5): 1466-1473. |
[8] | 李骜, 李一兵, 刘丹丹, 杨晓冬. 基于非下采样轮廓波的多曝光工件图像Retinex增强方法[J]. , 2012, (06): 1592-1596. |
[9] | 孙明超, 张崇, 刘晶红. 多尺度图像增强可见光与红外图像融合 [J]. , 2012, (03): 738-742. |
|