吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (3): 785-796.doi: 10.13229/j.cnki.jdxbgxb.20220483

• 计算机科学与技术 • 上一篇    

基于色彩校正和TransFormer细节锐化的水下图像增强

王德兴(),高凯,袁红春(),杨钰锐,王越,孔令栋   

  1. 上海海洋大学 信息学院,上海 201306
  • 收稿日期:2022-04-27 出版日期:2024-03-01 发布日期:2024-04-18
  • 通讯作者: 袁红春 E-mail:dxwang@shou.edu.cn;hcyuan@shou.edu.cn
  • 作者简介:王德兴(1968-),男,副教授,博士.研究方向:人工智能,模式识别和数据挖掘.E-mail:dxwang@shou.edu.cn
  • 基金资助:
    国家自然科学基金项目(41776142)

Underwater image enhancement based on color correction and TransFormer detail sharpening

De-xing WANG(),Kai GAO,Hong-chun YUAN(),Yu-rui YANG,Yue WANG,Ling-dong KONG   

  1. School of Information,Shanghai Ocean University,Shanghai 201306,China
  • Received:2022-04-27 Online:2024-03-01 Published:2024-04-18
  • Contact: Hong-chun YUAN E-mail:dxwang@shou.edu.cn;hcyuan@shou.edu.cn

摘要:

针对水下图像对比度低、细节表现差且存在色偏等问题,提出了一种多输入的基于TransFormer和卷积神经网络(CNN)的水下图像复原方法。利用TransFormer和相对总变差(RTV)构造深度特征提取模块,融合RTV提取的纹理图与TransFormer提取到的图像信息,有效增强了图像的细节特征。利用自动色彩均衡和Lab色彩空间构建色彩校正模块,提升图像对比度,同时校正颜色。利用多项损失函数约束网络收敛,得到增强后的清晰水下图像。最后,将本文方法与其他方法在测试集上进行定量和定性对比分析,实验结果表明,经过本文方法处理后的图像在清晰度、色彩表现和纹理信息方面均优于其他对比方法。

关键词: 图像处理, 水下图像增强, TransFormer, 颜色校正, 细节锐化

Abstract:

A multi-input underwater image recovery method based on TransFormer and convolutional neural network (CNN) was proposed to address the issues of low contrast, poor detail representation and color error in underwater images.TransFormer and relative total variatio were used to construct a depth feature extraction module to fuse the texture map extracted by relative total variatio (RTV) with the image information extracted by TransFormer, which effectively enhances the detail features of the image. The color correction module was constructed by using automatic color equalization and Lab color space to enhance the image contrast and correct the color. A multinomial loss function was used to constrain the network convergence to obtain the enhanced clear underwater images. Finally, the quantitative and qualitative comparative analysis of the proposed method with other methods on the test set was carried out, and the experimental results show that the images processed by the proposed method outperform other comparative methods in terms of sharpness, color performance and texture information.

Key words: image processing, underwater image enhancement, TransFormer, color correction, detail sharpening

中图分类号: 

  • TP751

图1

模型架构图"

图2

CNN颜色校正模块结构"

图3

残差卷积结构和D-conv结构"

图4

深度特征提取模块和Swin-Transformer架构图"

表1

TransFormer细节模块消融实验在测试集Test-1上的指标数据"

模型SSIMPSNRUIQMUCIQE
完整0.897923.21753.41770.5856
完全不含0.892223.59903.43680.5913
含部分0.873322.91113.47770.5810

图5

TransFormer细节模块消融实验定性对比"

表2

颜色校正模块消融实验在测试集Test-1上的指标数据"

模型SSIMPSNRUIQMUCIQE
完整0.897923.21753.41770.5856
不含0.882722.28433.47740.5777

表3

跳跃连接模块消融实验在测试集Test-1上的指标数据"

模型SSIMPSNRUIQMUCIQE
完整0.897923.21753.41770.5856
不含跳跃连接0.751120.83233.37210.5824
不含卷积层0.885823.11803.41670.5831
只含RGB0.876223.15613.41870.5854

图6

跳跃连接模块消融实验定性对比"

图7

不同方法在测试集Test-1上的定性对比"

表4

不同对比方法在测试集Test-1上的指标值"

方法SSIMPSNRUIQMUCIQE
CLAHE0.848820.76893.06720.5683
UCM0.798921.05402.53180.6267
UDCP0.549412.85551.79520.5911
FUnIE-GAN0.720320.01653.26360.5499
Water-Net0.841621.10383.19390.5810
MLFc-GAN0.653618.20002.66390.5466
Ucolor0.877423.49743.31970.5747
本文0.897923.21753.41770.5856

图8

不同方法在测试集Test-2上的定性对比"

表5

不同对比方法在测试集Test-2上的指标值"

方法NIQEUIQMUCIQE
CLAHE5.41582.46830.5560
UCM6.05481.96770.6110
UDCP6.80531.18250.5526
FUnIEGAN6.02782.88410.5442
Water-Net6.25342.69200.5748
MLFc-GAN8.06892.15000.5389
Ucolor6.32992.70980.5501
本文5.50392.96680.5819
1 Skarlatos D, Agrafiotis P, Menna F, et al. Ground control networks for underwater photogrammetry in archaeological excavations[C]∥Proceedings of the 3rd IMEKO International Conference on Metrology for Archaeology and Cultural Heritage, Lecce, Italy, 2017: 23-25.
2 Chuang M C, Hwang J N, Kresimir W. A feature learning and object recognition framework for underwater fish images[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2016, 25(4): 1862-1872.
3 Trahanias P E, Venetsanopoulos A N. Institute of electric and electronic engineer. color image enhancement through 3-D histogram equalization[C]∥11th IAPR International Conference on Image, Speech and Signal Analysis, The Hague, Netherlands, 1992: 545-548.
4 Zuiderveld. Contrast limited adaptive histogram equalization[J/OL]. [2022-04-18].
5 Zou W, Wang X, Li K, et al. Self-tuning underwater image fusion method based on dark channel prior[C]∥IEEE International Conference on Robotics and Biomimetics, Qingdao, China, 2016: 788-793.
6 AbuNaser A, Doush I A, Mansour N, et al. Underwater image enhancement using particle swarm optimization[J]. Journal of Intelligent Systems, 2015, 24(1): 99-115.
7 Hitam M S, Awalludin E A, Yussof W N J H W Y, et al. Mixture contrast limited adaptive histogram equalization for underwater image enhancement[C]∥International Conference on Computer Applications Technology, Sousse, Tunisia, 2013: 1-5.
8 Ancuti C, Ancuti C O, Bekaert P. Enhancing underwater images and videos by fusion[C]∥2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 81-88.
9 Zhang S, Wang T, Dong J, et al. Underwater image enhancement via extended multi-scale Retinex[J]. Neurocomputing, 2017, 245: 1-9.
10 Akkaynak D, Treibitz T, Sea-thru: a method for removing water from underwater images[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019: 1682-1691.
11 Trucco E, Olmos-Antillon T. Self-tuning underwater image restoration[J].IEEE Journal of Oceanic Engineering, 2006, 31(2): 511-519.
12 McGlamery B L. A computer model for underwater camera systems[J/OL]. [2022-04-18].
13 Jaffe J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-111.
14 Chiang J, Chen Y. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2012, 21(4): 1756-1769.
15 Peng Y T, Cao K M, Cosman P C. Generalization of the dark channel prior for single image restoration[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2018, 27(6): 2856-2868.
16 Akkaynak D, Treibitz T. A revised underwater image formation model[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 6723-6732.
17 Ding X, Wang Y, Zheng L, et al. Towards Underwater Image Enhancement Using Super-Resolution Convolutional Neural Networks[M]. Singapore: Springer, 2018.
18 Li J, Skinner K A, Eustice R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters,2018,3(1): 387-394.
19 Fabbri C, Jahidul I M, Sattar J. Enhancing underwater imagery using generative adversarial networks[EB/OL]. [2022-04-28].
20 Li C, Guo C, Ren W, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 29: 4376-4389.
21 Wang Y D, Guo J C, Gao H, et al. UIEC^2-Net: CNN-based underwater image enhancement using two color space[J]. Signal Processing: Image Communication, 2021, 96: No. 116250.
22 Liu Z, Lin Y T, Cao Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[J/OL]. [2022-04-28].
23 Xu L, Yan Q, Xia Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6): 1-10.
24 Getreuer P. Automatic color enhancement (ACE) and its fast implementation[J]. Image Processing on Line, 2012, 2: 266-277.
25 Li C, Anwar S, Hou J, et al. Underwater image enhancement via medium transmission-guided multi-color space embedding[J]. IEEE Transactions on Image Processing, 2021, 30: 4985-5000.
26 Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks[C]∥IEEE Conference on Computer Vision & Pattern Recognition, Honolulu, HI, USA, 2017: 5967-5976.
27 Zhao H, Gallo O, Frosio I, et al. Loss functions for neural networks for image processing[EB/OL]. [2022-04-28].
28 Islam M J, Xia Y, Sattar J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234.
29 Li C, Anwar S. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2019, 98(1): No. 107038.
[1] 杨国俊,齐亚辉,石秀名. 基于数字图像技术的桥梁裂缝检测综述[J]. 吉林大学学报(工学版), 2024, 54(2): 313-332.
[2] 肖明尧,李雄飞,朱芮. 基于NSST域像素相关分析的医学图像融合[J]. 吉林大学学报(工学版), 2023, 53(9): 2640-2648.
[3] 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429.
[4] 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426.
[5] 李健,熊琦,胡雅婷,刘孔宇. 基于Transformer和隐马尔科夫模型的中文命名实体识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1427-1434.
[6] 何科,丁海涛,赖宣淇,许男,郭孔辉. 基于Transformer的轮式里程计误差预测模型[J]. 吉林大学学报(工学版), 2023, 53(3): 653-662.
[7] 荣鑫,刘洪海,殷作耀,林海翔,边庆华. 基于图像处理的集料级配在线检测方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2847-2855.
[8] 杨怀江,王二帅,隋永新,闫丰,周跃. 简化型残差结构和快速深度残差网络[J]. 吉林大学学报(工学版), 2022, 52(6): 1413-1421.
[9] 贾海洋,夏睿,吕安祺,管噌璇,陈娟,王雷. 基于模板融合的超声医学影像全景拼接方法[J]. 吉林大学学报(工学版), 2022, 52(4): 916-924.
[10] 王康,姚猛,李立犇,李建桥,邓湘金,邹猛,薛龙. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报(工学版), 2021, 51(3): 1146-1152.
[11] 郭晓然,罗平,王维兰. 基于Transformer编码器的中文命名实体识别[J]. 吉林大学学报(工学版), 2021, 51(3): 989-995.
[12] 李健,刘孔宇,任宪盛,熊琦,窦雪峰. 基于自适应阈值的Canny算法在MRI边缘检测中的应用[J]. 吉林大学学报(工学版), 2021, 51(2): 712-719.
[13] 刘富,刘璐,侯涛,刘云. 基于优化MSR的夜间道路图像增强方法[J]. 吉林大学学报(工学版), 2021, 51(1): 323-330.
[14] 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620.
[15] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!