吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2609-2619.doi: 10.13229/j.cnki.jdxbgxb.20221408

• 交通运输工程·土木工程 • 上一篇    

荷载和高温对沙漠砂混凝土单轴抗压性能的影响

刘海峰(),陶仁光,车佳玲,杨维武,朱立晨   

  1. 宁夏大学 土木与水利工程学院,银川 750021
  • 收稿日期:2022-11-07 出版日期:2024-09-01 发布日期:2024-10-28
  • 作者简介:刘海峰(1975-),男,博士,教授.研究方向:材料和结构灾变行为.E-mail:liuhaifeng1557@163.com
  • 基金资助:
    国家自然科学基金项目(52168034);宁夏自然科学基金项目(2023AAC03039);宁夏高等学校一流学科建设(水利工程学科)资助项目(NXYLXK2021A03)

Influence of loading and high temperature on uniaxial compressive properties of desert sand concrete

Hai-feng LIU(),Ren-guang TAO,Jia-ling CHE,Wei-wu YANG,Li-chen ZHU   

  1. School of Civil and Hydraulic Engineering,Ningxia University,Yinchuan 750021,China
  • Received:2022-11-07 Online:2024-09-01 Published:2024-10-28

摘要:

为了研究高温后的沙漠砂混凝土力学性能,采用毛乌素沙地砂代替部分中砂制备沙漠砂混凝土,对经历不同荷载和温度作用后的沙漠砂混凝土进行轴心抗压强度试验,测得应力-应变曲线,分析了荷载水平、温度等级和冷却方式对沙漠砂混凝土高温后的质量损失率、超声波速和单轴受压性能的影响。结果表明:随着温度的升高,沙漠砂混凝土质量损失率逐渐增大,轴心抗压强度逐渐减小,峰值应变显著增大,弹性模量不断降低,应力-应变曲线趋于扁平。最后,基于混凝土两阶段本构模型,建立了考虑温度和荷载水平影响的沙漠砂混凝土本构模型。

关键词: 沙漠砂混凝土, 荷载水平, 单轴压缩, 高温, 应力-应变关系

Abstract:

In order to research on the mechanical properties of desert sand concrete (DSC) after high temperature, desert sand from Mu Us sandy land was used to partially replace medium sand to make DSC. The uniaxial compression experiments of DSC subjected to different loadings and temperatures were carried out to obtain the stress-strain curves. The influences of loading level, temperature and cooling methods on the mass loss rate, ultrasonic velocity and axial compressive properties were analyzed. Experimental results showed that the mass loss rate of DSC gradually increased with the temperature. The uniaxial compressive strength and modulus of elasticity of DSC declined, peak strain increased greatly, and the stress-strain curve gradually became flat. Taking into account of temperature and loading level, the constitutive model was established to simulate the mechanical properties of DSC based on the two-stage constitutive model, which provided technical support for the performance evaluation of DSC after high temperature.

Key words: desert sand concrete (DSC), loading level, uniaxial compression, high temperature, stress-strain relation

中图分类号: 

  • TU528

表1

水泥性能指标"

细度/%标准稠度用水量/%安定性凝结时间/min抗折强度/MPa抗压强度/MPa
初凝终凝3 d28 d3 d28 d
4.728合格1341736.58.433.254.1

表2

骨料性能指标"

骨料细度模数堆积密度/ (g·cm-3表观密度/ (g·cm-3含泥量/ %
沙漠砂0.191.402.620.14
中砂2.381.572.640.70
粗骨料-1.432.70.78

表3

骨料累计筛余量"

材料筛孔尺寸/mm
19169.54.752.361.180.60.30.150.0970.0750.050
沙漠砂------0.202.6616.5463.7391.9999.25
中砂---4.832.851.270.085.695.3---
粗骨料7.1423.677.399.5--------

图1

沙漠砂混凝土超声波波速与温度的关系"

表4

沙漠砂混凝土配合比"

沙漠砂替代率/%单位体积材料用量/(kg·m-328 d抗压强度/MPa
水泥细骨料粗骨料立方体抗压强度轴心抗压强度
沙漠砂中砂粒径为5~10 mm粒径为10~20 mm
0185370053837788034.626.0
4018537021532337788042.231.3

表5

高温后的沙漠砂混凝土质量损失率"

荷载水平温度和冷却方式
室温300 ℃, N300 ℃, W500 ℃, N500 ℃, W700 ℃, N700 ℃, W
004.502.175.632.347.833.23
0.404.121.765.412.127.623.14
0.604.052.015.262.167.563.44
0.804.662.095.901.727.662.93

图2

沙漠砂混凝土超声波速与荷载水平的关系"

图3

轴心抗压强度与温度的关系"

图4

轴心抗压强度与荷载水平的关系"

图5

轴心抗压强度预测值与试验值对比"

图6

轴心抗压强度与沙漠砂替代率的关系"

图7

沙漠砂混凝土相对峰值应变与温度的关系"

图8

峰值应变预测值与试验值对比"

图9

弹性模量与温度的关系"

图10

弹性模量预测值与试验值对比"

图11

沙漠砂混凝土横向变形系数与应力比的关系"

图12

沙漠砂混凝土典型应力-应变曲线"

图13

荷载和高温作用后的应力-应变曲线"

表6

拟合参数"

工况αR2βR2
20 ℃,02.430.9851.380.9950
20 ℃,0.41.950.9960.850.9970
20 ℃,0.62.610.9990.770.9830
20 ℃,0.82.820.9941.320.9960
300 ℃,0,N2.260.9932.030.9740
300 ℃,0,W1.260.9932.420.9890
300 ℃,0.4,N1.840.9870.820.9560
300 ℃,0.4,W0.910.9921.930.9740
300 ℃,0.6,N2.160.9981.830.9840
300 ℃,0.6,W1.450.9762.760.9790
300 ℃,0.8,N1.620.9941.830.9690
300 ℃,0.8,W1.150.9961.380.9650
500 ℃,0,N0.190.9613.690.9790
500 ℃,0,W0.520.9912.880.9890
500 ℃,0.4,N0.740.9973.500.9810
500 ℃,0.4,W0.350.9933.100.9855
500 ℃,0.6,N0.630.9715.390.9740
500 ℃,0.6,W0.420.9933.770.9950
500 ℃,0.8,N0.590.9623.690.9970
500 ℃,0.8,W0.480.9883.580.9420
700 ℃,0,N-0.110.9966.510.9910
700 ℃,0,W-0.290.9197.560.9950
700 ℃,0.4,N-0.180.9958.110.9888
700 ℃,0.4,W-0.310.9186.510.9630
700 ℃,0.6,N-0.030.9868.110.9720
700 ℃,0.6,W0.120.9693.690.9890
700 ℃,0.8,N-0.080.9695.840.9940
700 ℃,0.8,W-0.290.9814.410.8750

图14

参数α和β与温度的关系"

图15

参数α和β与荷载水平的关系"

图16

荷载和高温作用后的沙漠砂混凝土预测曲线与试验曲线对比"

1 Liu H F, Ma J R, Wang Y Y, et al. Influence of desert sand on the mechanical properties of concrete subjected to impact loading[J]. Acta mechanica Solida Sinica, 2017, 30:583-595.
2 Luo F J, He L, Pan Z, et al. Effect of very fine particles on workability and strength of concrete made with dune sand[J]. Construction and Building Materials, 2013, 47: 131-137.
3 Bosco E, Claessens R J M A, Suiker A S J. Multi-scale prediction of chemo-mechanical properties of concrete materials through asymptotic homogenization[J]. Cement and Concrete Research, 2020, 128:No.105929.
4 Wei D, Shen X D, Xue H J, et al. Research on the freeze-thaw cyclic test and damage model of aeolian sand lightweight aggregate concrete[J]. Construction and Building Materials, 2016, 123: 792-799.
5 Liu H F, Ma Y C, Ma J R, et al. Frost resistance of desert sand concrete[J].Advances in Civil Engineering, 2021,2021(Pt.9): No.6620058.
6 杜红秀,樊亚男.基于X-CT C60高性能混凝土高温细观结构损伤研究[J].建筑材料学报, 2020, 23(1): 210- 215.
Du Hong-xiu, Fan Ya-nan. Study on meso-structure damage of C60 high performance concrete at high temperature based on X-CT[J]. Journal of Building Materials,2020,23 (1) : 210-215.
7 Wang L, Zhao Y R, Xing Y M. Investigating high temperature deformation evolution of concrete under sustained loading using DIC technology and a temperature mechanical coupled damage constitutive model[J]. Construction and Building Materials, 2022, 324: No.126638.
8 Fan K J, Li J B, Yu M, et al. Compressive stress-strain relationship for stressed concrete at high temperature[J]. Fire Safety Journal, 2022, 130: No.103576.
9 车佳玲,王俊,刘海峰,等.沙漠砂制备高韧性水泥基复合材料在不同环境下的自愈合性能[J].吉林大学学报: 工学版, 2023, 53(8): 2277-2286.
Che Jia-ling, Wang Jun, Liu Hai-feng, et al. Self- -healing prop-erties with different environments of ECC prepared with desert sand[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(8):2277-2286.
10 Zhang Q, Liu Q, Liu H F. Effect of desert sand on the uniaxial compressive properties of mortar after elevated temper-ature[J]. Physics and Chemistry of the Earth, 2021, 121: No.102962
11 Shen Y J, Peng C, Han J S, et al. High temperature resistance of desert sand concrete: strength change and intrinsic mechanism[J]. Construction and Building Materials, 2022, 327: No.126948
12 Kotsovos M, Michael D, Newman John B. Generalized stress-strain relations for concrete[J]. Journal of the Engineering Mechanics Division, 1978, 12: 431-437.
13 李卫, 过镇海. 高温下砼的强度和变形性能试验研究[J]. 建筑结构学报, 1993, 14(1): 8-16.
Li Wei, Guo Zhen-hai. Experimental study on strength and deformation properties of concrete under high temperature[J]. Journal of Building Structures, 1993, 14(1): 8-16.
14 陈小龙. 高温后沙漠砂混凝土抗压强度试验研究及火灾评价[D]. 银川: 宁夏大学土木与水利工程学院, 2021.
Chen Xiao-long. Experimental study on compressive strength of desert sand concrete after high temperature and fire evalu-ation[D]. Yinchuan: School of Civil and Hydraulic Enginee-ring, Ningxia University, 2021.
15 刘宁. 沙漠砂混凝土高温后力学性能研究[D]. 银川: 宁夏大学土木与水利工程学院, 2018.
Liu Ning. Study on the mechanical behavior of desert sand concrete after high temperature[D].Yinchuan: School of Civil and Hydraulic Engineering, Ningxia University, 2018.
16 过镇海. 混凝土的强度与本构关系[M]. 北京: 中国建筑工业出版社, 2004.
17 肖建庄, 王平, 谢猛, 等.矿渣高性能混凝土高温后受压本构关系试验[J].同济大学学报: 自然科学版,2003,31(2): 186-190.
Xiao Jian-zhuang, Wang Ping, Xie Meng, et al. Experiment on compressive constitutive relation of high performance slag concrete after high temperature[J]. Journal of Tongji University (Natural Science), 2003, 31 (2): 186-190.
18 高丹盈,李晗.高温后纤维纳米混凝土单轴受压应力-应变关系[J].土木工程学报, 2015, 48(10): 10-20.
Gao Dan-ying, Li Han. Uniaxial compressive stress-strain relationship of fiber reinforced nano-concrete after high temperature [J]. Journal of Civil Engineering, 2015, 48 (10) : 10-20.
19 周星宇, 周济, 陈宗平.高温消防喷水冷却后混凝土应力-应变本构方程及剩余强度评估[J]. 工业建筑, 2022, 52(1): 194-199.
Zhou Xing-yu, Zhou Ji, Chen Zong-ping. Stress-strain constitutive equation and residual strength evaluation of concrete after high temperature fire sprinkler cooling[J]. Industrial Construction, 2022, 52 (1): 194-199.
[1] 刘方成,王将,吴孟桃,补国斌,何杰. 土工格栅加筋橡胶砂应力-应变特性试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2542-2553.
[2] 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型[J]. 吉林大学学报(工学版), 2023, 53(8): 2339-2349.
[3] 王登峰,陈宏利,那景新,陈鑫. 单双搭接接头经高温老化后的失效对比[J]. 吉林大学学报(工学版), 2023, 53(2): 346-354.
[4] 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723.
[5] 高菲,肖阳,张文华,祁锦轩,李子樵,马骁远. 高温和荷电状态对锂离子电池单体力学响应的耦合影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1574-1583.
[6] 秦国锋,那景新,慕文龙,谭伟,栾建泽,申浩. 高温老化对CFRP/铝合金粘接接头失效的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1063-1071.
[7] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[8] 段兴旺,刘建生. 316LN钢高温塑性及其断口特征[J]. 吉林大学学报(工学版), 2015, 45(2): 494-500.
[9] 赵家昕,马彪,李和言,朱莉,韩明,朱礼安. 湿式离合器接合过程中的热弹性稳定性[J]. 吉林大学学报(工学版), 2015, 45(1): 22-28.
[10] 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667.
[11] 马丽, 周凌, 何慧, 罗远芳, 贾德民. 竹粉高温蒸煮对竹粉/ABS木塑复合材料性能的影响[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 205-209.
[12] 赵静1,刘光达1,安战锋2,王君1. 提高高温超导磁力仪动态范围的补偿方法[J]. 吉林大学学报(工学版), 2011, 41(05): 1342-1347.
[13] 戴素江,张卫正,原彦鹏,赵维茂. 变高温塑性条件下高韧性球墨铸铁材料松弛再紧固寿命[J]. 吉林大学学报(工学版), 2010, 40(04): 1005-1008.
[14] 臧传义,郭玮,胡强,黄国锋,陈孝洲,贾晓鹏. 人造石墨与亚稳态再结晶石墨形态变化[J]. 吉林大学学报(工学版), 2010, 40(01): 87-0091.
[15] 刘义生,苏建,吴永芝. 汽车冷却液软管的温度特性[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 233-0235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!