吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2609-2619.doi: 10.13229/j.cnki.jdxbgxb.20221408
• 交通运输工程·土木工程 • 上一篇
Hai-feng LIU(),Ren-guang TAO,Jia-ling CHE,Wei-wu YANG,Li-chen ZHU
摘要:
为了研究高温后的沙漠砂混凝土力学性能,采用毛乌素沙地砂代替部分中砂制备沙漠砂混凝土,对经历不同荷载和温度作用后的沙漠砂混凝土进行轴心抗压强度试验,测得应力-应变曲线,分析了荷载水平、温度等级和冷却方式对沙漠砂混凝土高温后的质量损失率、超声波速和单轴受压性能的影响。结果表明:随着温度的升高,沙漠砂混凝土质量损失率逐渐增大,轴心抗压强度逐渐减小,峰值应变显著增大,弹性模量不断降低,应力-应变曲线趋于扁平。最后,基于混凝土两阶段本构模型,建立了考虑温度和荷载水平影响的沙漠砂混凝土本构模型。
中图分类号:
1 | Liu H F, Ma J R, Wang Y Y, et al. Influence of desert sand on the mechanical properties of concrete subjected to impact loading[J]. Acta mechanica Solida Sinica, 2017, 30:583-595. |
2 | Luo F J, He L, Pan Z, et al. Effect of very fine particles on workability and strength of concrete made with dune sand[J]. Construction and Building Materials, 2013, 47: 131-137. |
3 | Bosco E, Claessens R J M A, Suiker A S J. Multi-scale prediction of chemo-mechanical properties of concrete materials through asymptotic homogenization[J]. Cement and Concrete Research, 2020, 128:No.105929. |
4 | Wei D, Shen X D, Xue H J, et al. Research on the freeze-thaw cyclic test and damage model of aeolian sand lightweight aggregate concrete[J]. Construction and Building Materials, 2016, 123: 792-799. |
5 | Liu H F, Ma Y C, Ma J R, et al. Frost resistance of desert sand concrete[J].Advances in Civil Engineering, 2021,2021(Pt.9): No.6620058. |
6 | 杜红秀,樊亚男.基于X-CT C60高性能混凝土高温细观结构损伤研究[J].建筑材料学报, 2020, 23(1): 210- 215. |
Du Hong-xiu, Fan Ya-nan. Study on meso-structure damage of C60 high performance concrete at high temperature based on X-CT[J]. Journal of Building Materials,2020,23 (1) : 210-215. | |
7 | Wang L, Zhao Y R, Xing Y M. Investigating high temperature deformation evolution of concrete under sustained loading using DIC technology and a temperature mechanical coupled damage constitutive model[J]. Construction and Building Materials, 2022, 324: No.126638. |
8 | Fan K J, Li J B, Yu M, et al. Compressive stress-strain relationship for stressed concrete at high temperature[J]. Fire Safety Journal, 2022, 130: No.103576. |
9 | 车佳玲,王俊,刘海峰,等.沙漠砂制备高韧性水泥基复合材料在不同环境下的自愈合性能[J].吉林大学学报: 工学版, 2023, 53(8): 2277-2286. |
Che Jia-ling, Wang Jun, Liu Hai-feng, et al. Self- -healing prop-erties with different environments of ECC prepared with desert sand[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(8):2277-2286. | |
10 | Zhang Q, Liu Q, Liu H F. Effect of desert sand on the uniaxial compressive properties of mortar after elevated temper-ature[J]. Physics and Chemistry of the Earth, 2021, 121: No.102962 |
11 | Shen Y J, Peng C, Han J S, et al. High temperature resistance of desert sand concrete: strength change and intrinsic mechanism[J]. Construction and Building Materials, 2022, 327: No.126948 |
12 | Kotsovos M, Michael D, Newman John B. Generalized stress-strain relations for concrete[J]. Journal of the Engineering Mechanics Division, 1978, 12: 431-437. |
13 | 李卫, 过镇海. 高温下砼的强度和变形性能试验研究[J]. 建筑结构学报, 1993, 14(1): 8-16. |
Li Wei, Guo Zhen-hai. Experimental study on strength and deformation properties of concrete under high temperature[J]. Journal of Building Structures, 1993, 14(1): 8-16. | |
14 | 陈小龙. 高温后沙漠砂混凝土抗压强度试验研究及火灾评价[D]. 银川: 宁夏大学土木与水利工程学院, 2021. |
Chen Xiao-long. Experimental study on compressive strength of desert sand concrete after high temperature and fire evalu-ation[D]. Yinchuan: School of Civil and Hydraulic Enginee-ring, Ningxia University, 2021. | |
15 | 刘宁. 沙漠砂混凝土高温后力学性能研究[D]. 银川: 宁夏大学土木与水利工程学院, 2018. |
Liu Ning. Study on the mechanical behavior of desert sand concrete after high temperature[D].Yinchuan: School of Civil and Hydraulic Engineering, Ningxia University, 2018. | |
16 | 过镇海. 混凝土的强度与本构关系[M]. 北京: 中国建筑工业出版社, 2004. |
17 | 肖建庄, 王平, 谢猛, 等.矿渣高性能混凝土高温后受压本构关系试验[J].同济大学学报: 自然科学版,2003,31(2): 186-190. |
Xiao Jian-zhuang, Wang Ping, Xie Meng, et al. Experiment on compressive constitutive relation of high performance slag concrete after high temperature[J]. Journal of Tongji University (Natural Science), 2003, 31 (2): 186-190. | |
18 | 高丹盈,李晗.高温后纤维纳米混凝土单轴受压应力-应变关系[J].土木工程学报, 2015, 48(10): 10-20. |
Gao Dan-ying, Li Han. Uniaxial compressive stress-strain relationship of fiber reinforced nano-concrete after high temperature [J]. Journal of Civil Engineering, 2015, 48 (10) : 10-20. | |
19 | 周星宇, 周济, 陈宗平.高温消防喷水冷却后混凝土应力-应变本构方程及剩余强度评估[J]. 工业建筑, 2022, 52(1): 194-199. |
Zhou Xing-yu, Zhou Ji, Chen Zong-ping. Stress-strain constitutive equation and residual strength evaluation of concrete after high temperature fire sprinkler cooling[J]. Industrial Construction, 2022, 52 (1): 194-199. |
[1] | 刘方成,王将,吴孟桃,补国斌,何杰. 土工格栅加筋橡胶砂应力-应变特性试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2542-2553. |
[2] | 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型[J]. 吉林大学学报(工学版), 2023, 53(8): 2339-2349. |
[3] | 王登峰,陈宏利,那景新,陈鑫. 单双搭接接头经高温老化后的失效对比[J]. 吉林大学学报(工学版), 2023, 53(2): 346-354. |
[4] | 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723. |
[5] | 高菲,肖阳,张文华,祁锦轩,李子樵,马骁远. 高温和荷电状态对锂离子电池单体力学响应的耦合影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1574-1583. |
[6] | 秦国锋,那景新,慕文龙,谭伟,栾建泽,申浩. 高温老化对CFRP/铝合金粘接接头失效的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1063-1071. |
[7] | 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465. |
[8] | 段兴旺,刘建生. 316LN钢高温塑性及其断口特征[J]. 吉林大学学报(工学版), 2015, 45(2): 494-500. |
[9] | 赵家昕,马彪,李和言,朱莉,韩明,朱礼安. 湿式离合器接合过程中的热弹性稳定性[J]. 吉林大学学报(工学版), 2015, 45(1): 22-28. |
[10] | 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667. |
[11] | 马丽, 周凌, 何慧, 罗远芳, 贾德民. 竹粉高温蒸煮对竹粉/ABS木塑复合材料性能的影响[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 205-209. |
[12] | 赵静1,刘光达1,安战锋2,王君1. 提高高温超导磁力仪动态范围的补偿方法[J]. 吉林大学学报(工学版), 2011, 41(05): 1342-1347. |
[13] | 戴素江,张卫正,原彦鹏,赵维茂. 变高温塑性条件下高韧性球墨铸铁材料松弛再紧固寿命[J]. 吉林大学学报(工学版), 2010, 40(04): 1005-1008. |
[14] | 臧传义,郭玮,胡强,黄国锋,陈孝洲,贾晓鹏. 人造石墨与亚稳态再结晶石墨形态变化[J]. 吉林大学学报(工学版), 2010, 40(01): 87-0091. |
[15] | 刘义生,苏建,吴永芝. 汽车冷却液软管的温度特性[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 233-0235. |
|