吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2542-2553.doi: 10.13229/j.cnki.jdxbgxb.20211260
Fang-cheng LIU1(),Jiang WANG1,Meng-tao WU2,Guo-bin BU1(),Jie HE1
摘要:
基于静三轴剪切试验,分析了5种配比(0%、10%、20%、30%、40%)、4种格栅布置方式(无筋、水平1层、水平2层、水平3层)、3种围压(50、100、200 kPa)下土工格栅加筋橡胶砂的应力-应变关系特性和模量衰减特性。结果表明:①土工格栅加筋使得橡胶砂应力-应变关系曲线明显升高,加筋后橡胶砂的硬化特性增强。②采用扩展邓肯-张模型进行拟合,随着橡胶颗粒含量的增加,橡胶砂初始模量降低,模量衰减程度可由衰减参数定量反映;模量曲线衰减程度随加筋工况“水平3层加筋、无筋、水平2层加筋、水平1层加筋”依次增大。③土工格栅加筋使得橡胶砂的参考应变增大、应力-应变模型指数减小,即模量归一化应力应变曲线非线性程度减弱,随着土工格栅加筋密度和配比的增大,土工格栅对橡胶砂应力应变特性的加筋效应更显著。
中图分类号:
1 | Patil U, Valdes J R, Evans T M. Swell mitigation with granulated tire rubber[J]. Journal of Materials in Civil Engineering, 2011, 23(5): 721-727. |
2 | Soltani-jigheh H, Asadzadeh M, Marefat V. Effects of tire chips on shrinkage and cracking characteristics of cohesive soils[J]. Turkish Journal of Engineering and Environmental Sciences, 2013, 37(37): 259-271. |
3 | Xiao M, Bowen J, Graham M, et al. Comparison of seismic responses of geosynthetically reinforced walls with tire-derived aggregates and granular backfills[J]. Journal of Materials in Civil Engineering, 2012, 24(11): 1368-1377. |
4 | Christ M, Park J B, Hong S S. Laboratory Observation of the response of a buried pipeline to freezing rubber-sand backfill[J]. Journal of Materials in Civil Engineering, 2010, 22(9): 943-950. |
5 | Mehrjardi G T, Tafreshi S N M, Dawson A R. Numerical analysis on Buried pipes protected by combination of geocell reinforcement and rubber-soil mixture[J]. International Journal of Civil Engineering, Transaction B: Geotechnical Engineering, 2015, 13(2): 90-104. |
6 | Feng Z Y, Sutter K G. Dynamic properties of granulated rubber-sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344. |
7 | Senetakis K, Anastasiadis A, Pitilakis K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33(1): 38-53. |
8 | 刘方成, 陈璐, 王海东. 橡胶砂动剪模量和阻尼比循环单剪试验研究[J]. 岩土力学, 2016, 37(7): 1903-1913. |
Liu Fang-cheng, Chen Lu, Wang Hai-dong. Evaluation of dynamic shear modulus and damping ratio of rubber-sand mixture based on cyclic simple shear tests[J]. Rock and Soil Mechanics, 2016, 37(7): 1903-1913. | |
9 | 姚玉文, 刘方成, 补国斌, 等. 橡胶砂弹性动力学参数的弯曲-伸缩元试验研究[J]. 岩土力学, 2020, 41(7): 2369-2379. |
Yao Yu-wen, Liu Fang-cheng, Bu Guo-bin, et al. Laboratory study on elastic dynamic mechanics of rubber-sand mixture by bender-extender element method[J]. Rock and Soil Mechanics, 2020, 41(7): 2369-2379. | |
10 | Das S, Bhowmik D. Small-strain dynamic behavior of sand and sand-crumb rubber mixture for different sizes of crumb rubber particle[J]. Journal of Materials in Civil Engineering, 2020, 32(11): No. 04020334. |
11 | Rios S, Kowalska M, da Fonseca A V. Cyclic and dynamic behavior of sand-rubber and clay-rubber mixtures[J]. Geotechnical and Geological Engineering, 2021, 39(5): 3449-3467. |
12 | Lee J, Salgado R, Bernal A, et al. Shredded tires and rubber-sand as lightweight backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(2): 132-141. |
13 | Tsang H H, Lo S H, Xu X, et al. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(14): 2009-2024. |
14 | 刘方成, 任东滨, 刘娜, 等. 土工格室加筋橡胶砂垫层隔震效果数值分析[J]. 土木工程学报, 2015, 47(): 1-7. |
Liu Fang-cheng, Ren Dong-bin, Liu Na, et al. Numerical simulation on the isolation effect of geocell reinforced rubber-sand mixture cushion as earthquake base isolator[J]. China Civil Engineering Journal, 2015, 47(Sup.2): 1-7. | |
15 | Tsang H H, Tran D P, Hung W Y, et al. Performance of geotechnical seismic isolation system using rubber-soil mixtures in centrifuge testing[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(5): 1271-1289. |
16 | Pitilakis D, Anastasiadis A, Vratsikidis A, et al. Large-scale field testing of geotechnical seismic isolation of structures using gravel-rubber mixtures[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(10): 2712-2731. |
17 | Zornberg J G, Cabral A R, Viratjandr C. Behaviour of tire shred sand mixtures[J]. Canadian Geotechnical Journal, 2004, 41(2): 227-241. |
18 | 辛凌, 刘汉龙, 沈扬, 等. 废弃轮胎橡胶颗粒轻质混合土强度特性试验研究[J]. 岩土工程学报, 2010, 32(3): 428-433. |
Xin Ling, Liu Han-long, Shen Yang, et al. Consolidated undrained triaxial compression tests on lightweight soil mixed with rubber chips of scrap tires[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 428-433. | |
19 | Cabalar A F. Direct shear tests on waste tires-sand mixtures[J]. Geotechnical and Geological Engineering, 2011, 29(4): 411-418. |
20 | Vinod J S, Sheikh M N, Mastello D, et al. The direct shear strength of sand tyre shred mixtures[C]∥Proceedings of the International Conference on Geotechnical Engineering, Sri Lanka, 2015: 193-196. |
21 | 汪明元, 施戈亮, 丁金华, 等. 土工格栅与压实膨胀土的界面模型及其参数[J]. 吉林大学学报:工学版, 2010, 40(3): 688-693. |
Wang Ming-yuan, Shi Ge-liang, Ding Jin-hua, et al. Interface model and its parameters between geogrids and compacted expansive soil[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 688-693. | |
22 | 王蔓, 李泽成, 白瑞祥. 复合材料格栅加筋板的分层扩展特性[J]. 吉林大学学报:工学版, 2007, 37(1): 229-233. |
Wang Man, Li Ze-cheng, Bai Rui-xiang, Delamination growth characteristics for composite grid stiffened plates[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(1): 229-233. | |
23 | 杨广庆. 土工格栅加筋土结构理论及工程应用[M]. 北京:科学出版社, 2010. |
24 | Han J. Principles and Practice of Ground Improvement[M]. New York: John Wiley & Sons, 2015. |
25 | 刘方成, 吴孟桃, 杨峻. 土工格栅加筋橡胶砂强度特性试验研究[J]. 岩土力学, 2019,40(2): 580-591. |
Liu Fang-cheng, Wu Meng-tao, Yang Jun. Experimental study on strength characteristics of geogrid reinforced rubber sand mixtures[J]. Rock and Soil Mechanics, 2019, 40(2): 580-591. | |
26 | 刘启菲, 庄海洋, 陈佳,等.废旧轮胎橡胶颗粒-砂混合料抗剪强度与破坏模式试验研究[J].岩土工程学报, 2021, 43(10): 1887-1895. |
Liu Qi-fei, Zhuang Hai-yang, Chen Jia, et al. The shear strength and failure mode of rubber particle-sand mixtures in the test[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1887-1895. | |
27 | 杨广庆, 李广信, 张保俭. 土工格栅界面摩擦特性试验研究[J]. 岩土工程学报, 2006, 28(8): 948-952. |
Yang Guang-qing, Li Guang-xin, Zhang Bao-jian. Experimental studies on interface friction characteristics of geogrids[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 948-952. | |
28 | Abdi M R, Arjomand M A. Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand[J]. Geotextiles and Geomembranes, 2011, 29(6): 588-595. |
29 | 周小凤, 张孟喜, 邱成春, 等. 不同形式土工格栅加筋砂的强度特性[J]. 上海交通大学学报, 2013, 47(9): 1377-1381. |
Zhou Xiao-feng, Zhang Meng-xi, Qiu Cheng-chun, et al. Strength of sand reinforced with different forms of geogrid[J]. Journal of Shanghai Jiao Tong University, 2013, 47(9): 1377-1381. | |
30 | 胡幼常, 申俊敏, 赵建斌, 等. 土工格栅加筋掺砂黄土工程性质试验研究[J]. 岩土力学, 2013(): 74-80. |
Hu You-chang, Shen Jun-min, Zhao Jian-bin, et al. Experimental study of engineering properties of geogrid-reinforced loess mixed with sand[J]. Rock and Soil Mechanics, 2013(Sup.2): 74-80. | |
31 | 王协群, 郭敏, 胡波. 土工格栅加筋膨胀土的三轴试验研究[J]. 岩土力学, 2011, 32(6): 1649-1653. |
Wang Xie-qun, Guo Min, Hu Bo. Triaxial testing study of expansive soil reinforced with geogrid[J]. Rock and Soil Mechanics, 2011, 32(6): 1649-1653. | |
32 | Ahmed I. Laboratory Study on Properties of Rubber-soils[M]. Indiana, USA: Purdue University, 1993. |
33 | Verdugo R, Ishihara K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91. |
34 | Zheng Y F, Kevin G S. Dynamic properties of granulated rubber/sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344. |
35 | Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of Soil Mechanics and Foundations Division, 1970, 96(5): 1629-1653. |
36 | 刘方成, 张永富, 任东滨. 橡胶砂应力-应变特性三轴-单剪联合试验研究[J]. 岩土力学, 2016, 37(10): 2769-2779. |
Liu Fang-cheng, Zhang Yong-fu, Ren Dong-bin. Stress-strain characteristics of rubber-sand mixtures in united triaxial shear and simple shear tests[J]. Rock and Soil Mechanics, 2016, 37(1): 2769-2779. | |
37 | Youwai S, Bergado D T. Strength and deformation characteristics of shredded rubber tire sand mixtures[J]. Canadian Geotechnical Journal, 2003, 40(2): 254-264. |
[1] | 宫亚峰,吴树正,毕海鹏,谭国金. 基于现场监测技术的装配式箱涵温度场及冻胀分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2321-2331. |
[2] | 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型[J]. 吉林大学学报(工学版), 2023, 53(8): 2339-2349. |
[3] | 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098. |
[4] | 宫亚峰,吴树正,毕海鹏,周冬明,谭国金,黄晓明. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832. |
[5] | 张哲,付伟,张军辉,黄超. 循环荷载下冻融路基黏土长期塑性行为[J]. 吉林大学学报(工学版), 2023, 53(6): 1790-1798. |
[6] | 刘顺,唐小微,栾一晓. 可液化土阻尼系数对地铁结构地震响应的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 159-169. |
[7] | 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855. |
[8] | 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882. |
[9] | 文畅平,任睆遐. 基于Lade模型的生物酶改良膨胀土双屈服面本构关系[J]. 吉林大学学报(工学版), 2021, 51(5): 1716-1723. |
[10] | 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637. |
[11] | 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640. |
[12] | 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164. |
[13] | 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724. |
[14] | 杨爱武,周金,孔令伟. 固化吹填软土力学特性试验[J]. 吉林大学学报(工学版), 2014, 44(3): 661-667. |
[15] | 刘寒冰, 王静, 魏海斌, 冯恺. 冻融循环下路基土抗剪强度与塑性指数相关性[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 149-152. |
|