吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 347-354.doi: 10.13229/j.cnki.jdxbgxb.20230206

• 通信与控制工程 • 上一篇    

多标签环境反向散射辅助非正交多址接入系统性能分析

黄海燕1(),张宁1,梁琳琳2,王春丽1,张学军1   

  1. 1.兰州交通大学 电子与信息工程学院,兰州 730070
    2.西安电子科技大学 网络与信息安全学院,西安 710071
  • 收稿日期:2023-03-08 出版日期:2025-01-01 发布日期:2025-03-28
  • 作者简介:黄海燕(1988-),女,副教授,博士.研究方向:无线协作通信,非正交多址接入,无人机通信,反向散射通信. E-mail: huanghiayan@mail.lzjtu.cn
  • 基金资助:
    国家自然科学基金项目(62461032);兰州交通大学“天佑青年托举人才计划”项目;兰州交通大学重点研发项目(ZDYF2304)

Performance analysis of multi-tag ambient backscatter assists non-orthogonal multiple access system

Hai-yan HUANG1(),Ning ZHANG1,Lin-lin LIANG2,Chun-li WANG1,Xue-jun ZHANG1   

  1. 1.School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.School of Cyber Engineering,Xidian University,Xi’an 710071,China
  • Received:2023-03-08 Online:2025-01-01 Published:2025-03-28

摘要:

本文考虑多标签环境反向散射与非正交多址接入技术相结合的通信系统。首先,本文在多标签的基础上提出了一种最佳标签选择方案,即在基站与远用户之间放置的M个标签中选择出接收信噪比最大的标签进行传输,分析M个标签对远用户中断性能的影响;其次,在近用户端分析采用理想和非理想连续干扰消除对近用户中断性能产生的差异,推导了用户的精确和渐近中断概率及吞吐量表达式,并证明远用户和近用户均可以获得全分集阶数;最后,通过仿真验证了理论分析的正确性,得到了标签数量、非理想SIC的残余干扰系数和目标速率等关键参数对用户性能的影响,当标签数量M=5,信噪比γ=-28?dB时,其他参数保持不变,远用户的中断性能比单标签提升约10%。

关键词: 通信技术, 环境反向散射, 多标签, 非正交多址接入, 连续干扰消除

Abstract:

In this paper, we consider a communication system combining multi-tags ambient backscatter with non-orthogonal multiple access technology. First, on the basis of multi-tags, we propose an optimal tag selection scheme in which the best tag is selected for transmission among M tags placed between the base station and the far user, to analyze the effect of M tags on the far user outage performance. Also, the difference in the near user outage performance produced by using ideal and non-ideal successive interference cancellation is analyzed at the near user side. Then, exact and asymptotic outage probabilities and throughput expressions are derived for users, as well as it is proved that full diversity orders are available for the far and near users. Finally, the correctness of the theoretical analysis is verified by simulation, and the effects of key parameters such as the number of tags, residual interference coefficient of non-ideal SIC and target rate on user performance are obtained. When the number of tags M=5, the signal-to-noise ratio γ=-28?dB, under the same conditions with other parameters fixed, the outage performance of far users is improved by about 10% over single tag.

Key words: communication technology, ambient backscatter, multi-tags, non-orthogonal multiple access, successive interference cancellation

中图分类号: 

  • TN925

图1

多标签环境反向散射NOMA系统模型图"

图2

近用户UN的中断概率"

图3

远用户UF的中断概率"

图4

吞吐量随不同速率变化曲线图"

1 崔子琦, 王公仆, 魏旭昇, 等. 反向散射通信的未来应用与技术挑战 [J]. 移动通信, 2021,45(4): 29-36.
Cui Zi-qi, Wang Gong-pu, Wei Xu-sheng, et al. Future applications and technical challenges of backscatter communication [J]. Mobile Communications, 2021,45(4): 29-36.
2 Ding Z, Lei X, George K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends [J]. IEEE Journal on Selected Areas in Communi cations, 2017, 35(10): 2181-2195.
3 杨普, 曲庆悦, 申逸飞, 等. 能量效率最大化的NOMA系统功率分配方法[J].吉林大学学报:工学版, 2024,54(8):2370-2377.
Yang Pu, Qu Qing-yue, Shen Yi-fei, et al. NOMA system power distribution method for maximizing energy efficiency[J]. Journal of Jilin University(Engineering and Technology Edition), 2024,54(8):2370-2377.
4 Zhang Q, Zhang L, Liang Y, et al. Backscatter-NOMA: a symbiotic system of cellular and Internet-of-Things networks [J]. IEEE Access, 2019, 7:20000-20013.
5 Elsayed M, Samir A, El-Banna A A A, et al. When NOMA multiplexing meets symbiotic ambient backscatter communication: outage analysis[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1):1026-1031.
6 Chen W, Ding H, Wang S, et al. Ambient backscatter communications over NOMA downlink channels [J]. China Communications, 2020, 17(6):80-100.
7 Chen W, Ding H, Wang S, et al. Backscatter-based cooperative NOMA[C]∥IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 2020:1-7.
8 Ding H, Costa D, Ge J, et al. Outage analysis for cooperative ambient backscatter systems [J]. IEEE Wireless Communications Letters, 2020, 9(5):601- 605.
9 Muratkar T, Bhurane A, Sharma P, et al. Analysis of multi-tag ambient backscatter communication under time-Selective Fading [J]. IEEE Communications Letters, 2022, 26(1):40-43.
10 Kang X, Liang Y, Yang J, et al. Riding on the primary: a new spectrum sharing paradigm for wireless-powered IoT devices [J]. IEEE Transactions on Wireless Communications, 2018, 17(9):6335-6347.
11 Ling Z, Hu F, Li D, et al. Tag selection for backscatter communication in classified wireless body area networks [C]∥IEEE Wireless Communications and Networking Conference (WCNC), Seoul,South Korea, 2020:1-6.
12 Mouni N S, Kumar A, Upadhyay P K. Adaptive user pairing for NOMA systems with imperfect SIC [J]. IEEE Wireless Communications Letters, 2021, 10(7):1547-1551.
13 Duan Z, Yang X, Gong Y, et al. Covert communication in uplink NOMA systems under channel distribution information uncertainty[J]. IEEE Communications Letters, 2023, 27(5):1282-1286.
14 Dani M N, So D K C, Tang J, et al. NOMA and coded multicasting in cache-aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2506-2520.
15 Liu Y, Ye Y, Yan G, et al. Optimal tag selection scheme for a backscatter communication system over the independent but not necessarily identically distributed Rayleigh fading channels[J]. Electronics Letters, 2021, 57(7):306-309.
[1] 杨普,曲庆悦,申逸飞,刘毅. 能量效率最大化的非正交多址接入系统功率分配方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2370-2377.
[2] 段中兴,刘瑞兴,刘冲. 多策略改进麻雀搜索算法优化三维DV-Hop节点定位[J]. 吉林大学学报(工学版), 2024, 54(3): 771-784.
[3] 周杰,王学英,陈钱,罗宏,徐蕾. 基于函数拟合AoA任意分布的MIMO信道特征分析[J]. 吉林大学学报(工学版), 2023, 53(10): 2994-3006.
[4] 国强,崔玉强,王勇. 无线传感器网络中基于动态簇的节点调度算法[J]. 吉林大学学报(工学版), 2022, 52(6): 1466-1476.
[5] 李建坡,李美霖,杨涛,薛鹏. 大规模MIMO⁃OFDM系统中低复杂度维纳滤波信道估计算法[J]. 吉林大学学报(工学版), 2022, 52(1): 211-218.
[6] 孙大洋,王雪莹,韩双雪,钟辉,戴江南. 虚拟锚点高维坐标的非视距识别及定位优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2207-2215.
[7] 李建坡,薛鹏,杨涛,李美霖. 基于分组导频复用的大规模多输入多输出系统导频污染抑制方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2225-2236.
[8] 赵海英,周伟,侯小刚,张小利. 基于多任务学习的传统服饰图像双层标注[J]. 吉林大学学报(工学版), 2021, 51(1): 293-302.
[9] 马彦,黄健飞,赵海艳. 基于车间通信的车辆编队控制方法设计[J]. 吉林大学学报(工学版), 2020, 50(2): 711-718.
[10] 刘毅,肖玲玲,王改静,张武军. 基于联合优化的D2D资源分配算法[J]. 吉林大学学报(工学版), 2020, 50(1): 306-314.
[11] 李翠然,于永生,谢健骊. 基于次用户优先级的频谱共享动态博弈算法[J]. 吉林大学学报(工学版), 2020, 50(1): 315-323.
[12] 王金鹏,叶政鹏,曹帆,邹念育. 5G移动通信中基于同频干扰分布的协同分布式天线传输系统[J]. 吉林大学学报(工学版), 2020, 50(1): 333-341.
[13] 李文军,华强,谭立东,孙悦. DV⁃HOP和接收信号强度指示结合的改进算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1689-1695.
[14] 王洪雁,房云飞,朱圣棋,裴炳南. 非均匀噪声条件下考虑互耦效应的DOA估计方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1706-1714.
[15] 刘勇,邓方顺,刘小林,闵思婕,王鹏. 基于双混沌振子的最小频移键控信号频率估计方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1357-1362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!