吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (11): 3148-3157.doi: 10.13229/j.cnki.jdxbgxb.20230026

• 车辆工程·机械工程 • 上一篇    

双锥形铜合金药型罩旋压工艺仿真与实验验证

李彦清1(),卢升旭1,李永洲1,黄明智1,黄涛2()   

  1. 1.长春理工大学 机电工程学院,长春 130022
    2.长春设备工艺研究所,长春 130012
  • 收稿日期:2023-01-09 出版日期:2024-11-01 发布日期:2025-04-24
  • 通讯作者: 黄涛 E-mail:liyanqing@cust.edu.cn;13843082365@163.com
  • 作者简介:李彦清(1972-),男,教授,博士. 研究方向:现代机械设计理论与方法.E-mail:liyanqing@cust.edu.cn
  • 基金资助:
    吉林省自然科学基金项目(20200201012JC);吉林省科技发展计划项目(20210201046GX)

Simulation and experimental validation of spinning process for double-cone-shaped copper alloy dosage form cover in pharmaceutical applications

Yan-qing LI1(),Sheng-xu LU1,Yong-zhou LI1,Ming-zhi HUANG1,Tao HUANG2()   

  1. 1.School of Electromechanical Engineering,Changchun University of Science and Technology,Changchun 130022,China
    2.Changchun Institute of Equipment and Technology,Changchun 130012,China
  • Received:2023-01-09 Online:2024-11-01 Published:2025-04-24
  • Contact: Tao HUANG E-mail:liyanqing@cust.edu.cn;13843082365@163.com

摘要:

本文主要针对铜合金药型罩零件进行强力旋压成形模拟仿真,基于Simufact/Ansys平台建立双锥形铜合金药型罩旋压三维有限元模型,通过数值模拟对药型罩强力旋压成形过程应力应变的分布规律分析,得出在药型罩的前端区域和双锥角过渡圆弧区域应力较大。以药型罩旋压后的应力应变分布为分析目标,得到旋轮安装角、旋轮半径及进给比对应力应变的影响规律。应用仿真优化的工艺参数进行旋压实验,实验结果表明药型罩满足精度要求,表明采用模拟仿真的方法和手段,能够对实际旋压加工起到指导作用。

关键词: 双锥形铜合金药型罩, 强力旋压, 应力应变

Abstract:

This paper mainly focuses on the simulation and experiments of spinning process of copper alloy charge liner. Based on the Simufact/Ansys platform, a three-dimensional finite element model of biconical copper alloy charge liner spinning is established. The stress and strain distribution of the charge liner, during the process of power spinning, is analyzed by numerical simulation method, and the conclusion of analysis is that higher stresses lie in the front area and biconical transition arc area of the charge liner. Aiming at stress-strain distribution of charge liner after spinning, the influences of spinning wheel installation angle, radius of the spinning wheel and the spinning wheel feed ratio on the stress and strain distribution are respectively obtained. The spinning experiments are carried out with the optimized process parameters, the experimental results show that the size of the charge liner meets the accuracy requirements, which indicates that the simulation method can play a guiding role in the actual spinning processing.

Key words: biconical copper alloy charge liner, power spinning, stress and strain

中图分类号: 

  • TG306

表1

铜合金主要化学成分"

元素百分比/%元素百分比/%
Cu99.96S0.01
Ag0.005Fe0.01
Zn0.01P0.005

图1

强力旋压原理示意图"

图2

变壁厚板料示意图"

图3

上旋轮轨迹"

图4

旋轮二维示意图"

图5

同步夹具设计图纸"

图6

同步夹具示意图"

表2

不同方案的旋压参数"

方案

旋轮工作角

β/(°)

圆角半径R

/mm

进给比f

/(mm·r-1

145100.30
26080.30
360100.30
460150.30
560100.20
660100.45

图7

双锥形药型罩有限元模型"

图8

网格划分"

图9

应变云图(成形状态95%)"

图10

应力云图(成形状态95%)"

图11

应变云图(成形状态95%)"

图12

应力云图(成形状态95%)"

图13

应变云图(成形状态95%)"

图14

应力云图(成形状态95%)"

图15

等效应力分布图"

图16

等效塑性应变分布图"

图17

合格旋压实验样件"

图18

不合格旋压实验样件"

表3

合格工件壁厚尺寸测量结果"

等分点壁厚/mm

第1条

母线

第2条

母线

第3条

母线

第4条

母线

12.842.852.832.84
22.862.872.852.87
32.802.832.842.86
42.832.822.802.83
52.752.732.742.75
62.732.772.752.71
72.642.662.652.68
82.662.662.662.62
92.682.672.632.65
102.612.602.632.64
前端壁厚差0.060.050.050.04
后端壁厚差0.070.070.030.06
1 徐恒秋,樊桂森,张锐,等. 旋压设备及工艺技术的应用与发展[J]. 新技术新工艺, 2007, 230(2): 1, 6-8.
Xu Heng-qiu, Fan Gui-sen, Zhang Rui, et al. The application and development of spinning equipment and technology[J]. New Technology&New Process, 2007, 230(2): 1, 6-8.
2 Huang C C, Hung J C, Hung C H, et al. Finite element analysis on neck-spinning process of tube at elevated temperature[J]. Int J Adv Manuf Technol, 2011, 56: 1039-1048.
3 张全孝,姚懂,曹连忠,等. 钨铜EFP药型罩的制备及成形性能[J]. 稀有金属材料与工程, 2009, 38(3): 154-158.
Zhang Quan-xiao, Yao Dong, Cao Lian-zhong, et al. Preparation and formability of tungsten-copper EFP liner[J]. Rare Metal Materials and Engineering, 2009, 38(3): 154-158.
4 张晋辉,牛婷,温凯,等. 铝合金锥形件强旋壁厚与旋压力分布研究[J]. 兵器装备工程学报, 2020, 41(8): 245-249.
Zhang Jin-hui, Niu Ting, Wen Kai, et al. Research on distribution of wall thickness and spinning force on power spinning for aluminum alloy conical parts[J]. Journal of Ordnance Equipment Engineering, 2020, 41(8): 245-249.
5 夏琴香,张帅斌,吴小瑜,等. 锥形件单道次拉深旋压成形的数值模拟及试验研究[J]. 锻压技术, 2010, 35(1): 52-56.
Xia Qin-xiang, Zhang Shuai-bin, Wu Xiao-yu, et al. Numerical simulation and experimental investigation on one-path deep drawing spinning of conical part[J]. Forging&Stamping Technology, 2010, 35(1): 52-56.
6 Mori K, Ishiguro M, Isomura Y. Hot shear spinning of cast aluminium alloy parts[J]. Journal of Materials Processing Technology, 2009, 209(7): 3621-3627.
7 Li Y, Wang J, Lu G D, et al. A numerical study of the effects of roller paths on dimensional precision in die-less spinning of sheet metal[J]. Journal of Zhejiang University Science A, 2014, 15(6): 432-446.
8 李灵凤. 变壁厚锥形件强力旋压过程有限元力学模型的建立[J]. 锻压装备与制造技术, 2006(1): 64-66.
Li Ling-feng. FEM mechanics modelling of power spinning process of varying thickness conical parts[J]. China Metal Forming Equipment & Manufacturing Technology, 2006(1): 64-66.
9 徐银丽,詹梅,杨合,等. 锥形件变薄旋压回弹的三维有限元分析[J]. 材料科学与工艺, 2008, 16(2): 167-171.
Xu Yin-li, Zhan Mei, Yang He, et al. Springback law analysis of cone spinning using 3D FEM[J]. Materials Science and Technology, 2008, 16(2): 167-171.
10 吴统超,詹梅,古创国,等. 大型复杂薄壁壳体第一道次旋压成形质量分析[J]. 材料科学与工艺, 2011, 19(1): 126-131.
Wu Tong-Chao, Zhan Mei, Gu Chuang-guo, et al. Forming quality of the first pass spinning of large-sized complicated thin-walled shell[J]. Materials Science and Technology, 2011, 19(1): 126-131.
11 Childerhouse T, Long H. Processing maps for wrinkle free and quality enhanced parts by shear spinning[J]. Procedia Manufacturing, 2019, 29: 137-144.
12 陆栋,张乐,蒲世翱,等. 304不锈钢锥形件旋压成形工艺参数对损伤的影响[J]. 热加工工艺, 2015, 44(11): 162-165.
Lu Dong, Zhang Le, Pu Shi-ao, et al. Effect of process parameters on damage during spinning forming of 304 stainless steel conical parts[J]. Hot Working Technology, 2015, 44(11): 162-165.
13 陈建华,马飞,任顺奎,等. 大直径薄壁铝合金封头剪切旋压成形缺陷分析[J]. 精密成形工程, 2016, 8(2): 64-67.
Chen Jian-hua, Ma Fei, Ren Shun-kui, et al. Defect analysis of shear spinning of aluminum alloy thin-walled head with large diameter[J]. Journal of Netshape Forming Engineering, 2016, 8(2): 64-67.
[1] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[2] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[3] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[4] 谷诤巍, 张文学, 吕萌萌, 王伟, 徐虹, 李欣. 宽翼边U型截面不锈钢型材拉弯成形缺陷控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
[5] 伦凤艳, 付文智, 李明哲, 依卓, 王欣桐, 陈雪. 基于弯曲辊的三维曲面柔性轧制成形[J]. 吉林大学学报(工学版), 2017, 47(3): 876-883.
[6] 谷诤巍, 吕萌萌, 李欣, 徐虹. 数控拉弯工艺中型材变形量的影响因素[J]. 吉林大学学报(工学版), 2016, 46(4): 1190-1196.
[7] 谷诤巍, 吕萌萌, 赵立辉, 徐虹, 李欣, 陆冠含. 超高强钢热成形淬火阶段的工艺参数优化[J]. 吉林大学学报(工学版), 2016, 46(3): 853-858.
[8] 胡平, 张金女, 申国哲, 林发财, 刘立忠. 应力状态对模具分区冷却热成形S-rail硬度分布的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 500-504.
[9] 杨振, 蔡中义, 李明哲. 分布式位移加载方式拉伸成形三维曲面件的数值模拟[J]. 吉林大学学报(工学版), 2016, 46(1): 199-204.
[10] 胡志清,甄娇娇,冯增铭,周淑红. 滚压拉伸成形曲面技术及其数值模拟[J]. 吉林大学学报(工学版), 2014, 44(3): 701-707.
[11] 王蜜, 蔡中义, 李明哲, 王大明. 三维曲面件辊压成形弯曲变形的计算及数值模拟[J]. 吉林大学学报(工学版), 2014, 44(2): 404-408.
[12] 付文智, 朱必章, 张昊晗, 李明哲, 邓玉山. 柔性压辊拉伸成形球形件的解析法[J]. , 2012, 42(04): 930-935.
[13] 彭赫力, 李明哲, 付文智, 冯朋晓. 柔性离散夹钳拉形工艺的数值模拟 [J]. , 2012, (03): 660-664.
[14] 谷诤巍, 孟佳, 李欣, 徐虹, 于思彬, 沈永波. 超高强钢热成形奥氏体化加热参数的优化[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 194-197.
[15] 徐虹, 沈永波, 谷诤巍, 孟佳, 于思彬, 李欣. 汽车超高强钢防撞梁热成形试验[J]. 吉林大学学报(工学版), 2011, 41(增刊1): 111-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!