吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1834-1841.doi: 10.13229/j.cnki.jdxbgxb201706022

• 论文 • 上一篇    下一篇

超高强度防撞梁热冲压成形工艺优化

吕萌萌, 谷诤巍, 徐虹, 李欣   

  1. 吉林大学 材料科学与工程学院,长春 130022
  • 收稿日期:2016-07-04 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 谷诤巍(1970-),男,教授,博士生导师.研究方向:金属塑性成形技术.E-mail:gzweii@163.com
  • 作者简介:吕萌萌(1988-),男,博士研究生.研究方向:金属塑性成形技术.E-mail:lvmm1988@163.com
  • 基金资助:
    国家自然科学基金项目(51301074); 吉林省科技发展计划项目(20130102021JC, 20160204058GX)

Process optimization of hot stamping for anti-collision beam with ultra high strength

LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin   

  1. College of Materials Science and Engineering, Jilin University,Changchun 130022,China
  • Received:2016-07-04 Online:2017-11-20 Published:2017-11-20

摘要: 对超高强度防撞梁的热冲压成形过程进行了模拟分析,揭示了热成形过程不同阶段板料温度、厚度、微观组织和性能的变化规律,以及初始成形温度、冲压速度和压边力等工艺参数对超高强钢热成形的影响规律,优化了防撞梁热成形工艺参数,并通过试验进行了验证。结果表明:热冲压成形过程中,板料厚度变化主要发生在高速冲压阶段,微观组织及性能变化主要发生在淬火阶段,热冲压成形件卸载后的回弹量很小;初始成形温度对板料厚度变化影响显著,初始成形温度较低时板料成形性较差;冲压速度过大或过小均易导致板料减薄严重;添加压料板会大幅降低板料流动性,易导致拉裂;对本文构件而言,最佳工艺参数是:初始成形温度为800 ℃、冲压速度为100 mm/s,不设置压料板。

关键词: 材料合成与加工工艺, 超高强钢, 热成形, 工艺优化, 数值模拟

Abstract: The hot stamping process of an anti-collision beam with ultra high strength was analyzed by simulation. The evolutions of the temperature, thickness, microstructure and mechanical properties of the blank in different stages of hot stamping were investigated. The influences of the process parameters, such as initial forming temperature, punch speed and blankholder force, were studied. Then these parameters were optimized and the results were verified by hot stamping tests. Results show that the blank thickness varies mainly in the stamping stage, while the microstructure and the mechanical properties change mainly in the quenching stages, a little springback occurs after the component is unloaded. The influence of the initial forming temperature on the thickness is obvious, and the formability is poor under low initial forming temperature condition. Both over high and over low punch speeds can cause over reduction of the blank thickness. The blankholder setting reduces the fluidity of the metal greatly, which may bring in cracking. For the beam investigated in this work, the optimum process parameters are initial forming temperature of 800 ℃, punch speed of 100 mm/s, and no blankholder setting.

Key words: materials synthesis and processing technology, ultra high strength steel, hot stamping, process optimization, numerical simulation

中图分类号: 

  • TG306
[1] 马宁,申国哲,张宗华,等.高强度钢板热冲压材料性能研究及在车身设计中的应用[J]. 机械工程学报,2011,47(8):60-65.
Ma Ning, Shen Guo-zhe, Zhang Zong-hua,et al. Material performance of hot-forming high strength steel and its application in vehicle body[J]. Journal of Mechanical Engineering,2011,47(8):60-65.
[2] 朱丽娟,谷诤巍,吕义,等. 超高强钢热冲压硬化机理[J]. 吉林大学学报:工学版,2013,43(2):376-379.
Zhu Li-juan, Gu Zheng-wei, Lyu Yi, et al. Mechanism of hot stamping hardening for ultra-high strength steel[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(2):376-379.
[3] 马宁,胡平,郭威. 热成形硼钢热、力及相变耦合关系[J]. 材料热处理学报,2010,31(11):33-36,41.
Ma Ning, Hu Ping, Guo Wei. Experiments and analysis of relations among heat, stress and transformation of boron steel for hot forming[J]. Transactions of Materials and Heat Treatment,2010,31(11):33-36,41.
[4] 马宁,胡平,武文华,等. 高强度钢板热成形本构理论与实验分析[J]. 力学学报,2011,43(2):346-353.
Ma Ning, Hu Ping, Wu Wen-hua, et al. Constitutive theory and experiment analysis of hot forming for high strength steel[J]. Chinese Journal of Theoretical and Applied Mechanics,2011,43(2):346-353.
[5] 姜大鑫,武文华,胡平,等. 高强度钢板热成形热、力、相变数值模拟分析[J]. 机械工程学报,2012,48(12):18-23.
Jiang Da-xin, Wu Wen-hua, Hu Ping, et al. Thermo-mechanical-martensitic transformation numerical simulation of high strength steel in hot forming[J]. Journal of Mechanical Engineering,2012,48(12):18-23.
[6] 马宁,武文华,申国哲,等. 高强度钢板热成形数值模拟-静力显式[J]. 计算力学学报,2011,28(3):371-376.
Ma Ning, Wu Wen-hua, Shen Guo-zhe, et al. Study of hot forming for high strength steel: numerical simulation-static explicit algorithm[J]. Journal of Mechanical Engineering,2011,28(3):371-376.
[7] 马宁,胡平,闫康康,等. 高强度硼钢热成形技术研究及其应用[J]. 机械工程学报,2010,46(14):68-72.
Ma Ning, Hu Ping, Yan Kang-kang, et al. Research on boron steel for hot forming and its application[J]. Journal of Mechanical Enginering,2010,46(14):68-72.
[8] 谷诤巍,孟佳,李欣,等. 超高强钢热成形奥氏体化加热参数的优化[J]. 吉林大学学报:工学版,2011,41(增刊2):194-197.
Gu Zheng-wei,Meng Jia,Li Xin,et al.Research on optimization of the heating parameters of the ultra high strength steel's austenization in hot stamping process[J].Journal of Jilin University(Engineering and Technology Edition),2011,41(Sup.2):194-197.
[9] 崔俊佳,于海平,李春峰,等. 高强钢板热冲压工艺中的相变模拟[J]. 塑性工程学报,2013,20(1):48-52.
Cui Jun-jia, Yu Hai-ping, Li Chun-feng, et al. Phase transformation simulation of high strength steel under hot stamping process[J]. Journal of Plasticity Engineerlng,2013,20(1):48-52.
[10] 邢忠文,包军,杨玉英,等. 可淬火硼钢板热冲压成形实验研究[J]. 材料科学与工艺,2008,16(2):172-175.
Xing Zhong-wen, Bao Jun, Yang Yu-ying, et al. Hot stamping processing experiments of quenchable boron steel[J]. Materials Science and Technology,2008,16(2):172-175.
[11] 刘红生,包军,邢忠文,等. 22MnB5 超高强钢板热成形中的回弹机理分析[J]. 航空学报,2010,31(4):865-870.
Liu Hong-sheng, Bao Jun, Xing Zhong-wen, et al. Analysis of mechanism of springback in 22MnB5 super-high strength steel forming[J]. Acta Aeronautica et Astronautica Sinica,2010,31(4):865-870.
[12] Yanagida A, Azushima A. Evaluation of coefficients of friction in hot stamping by hot flat drawing test[J]. CIRP Annals-Manufacturing Technology,2009,58:247-250.
[13] Shapiro A B. Using LS-dyna for hot stamping[C]//Proceedings of the 7th European LS-Dyna Conference, Stuttgart, Germany, 2009:1-9.
[14] 徐勇. 超高强度可淬火钢板热冲压成形工艺数值模拟研究[D]. 长春: 吉林大学材料科学与工程学院, 2010.
Xu Yong. Research on numerical simulation of hot stamping process of quenchable ultra high strength steel[D]. Changchun: College of Material Science and Engineering, Jilin University, 2010.
[1] 郭昊添,徐涛,梁逍,于征磊,刘欢,马龙. 仿鲨鳃扰流结构的过渡段换热表面优化设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1793-1798.
[2] 姜秋月,杨海峰,檀财旺. 22MnB5超高强钢焊接接头强化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1806-1810.
[3] 宫亚峰, 王博, 魏海斌, 何自珩, 何钰龙, 申杨凡. 基于Peck公式的双线盾构隧道地表沉降规律[J]. 吉林大学学报(工学版), 2018, 48(5): 1411-1417.
[4] 胡志清, 颜庭旭, 李洪杰, 吕振华, 廖伟, 刘庚. 深冷处理对铝合金薄板冲剪成形性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1524-1530.
[5] 庄蔚敏, 赵文增, 解东旋, 李兵. 超高强钢/铝合金热铆连接接头性能[J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[6] 邱小明, 王银雪, 姚汉伟, 房雪晴, 邢飞. 基于灰色关联的DP1180/DP590异质点焊接头工艺参数优化[J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[7] 陈俊甫, 管志平, 杨昌海, 牛晓玲, 姜振涛, 宋玉泉. 金属棒试样拉伸和扭转试验应变范围和力学特性对比[J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[8] 梁晓波, 蔡中义, 高鹏飞. 夹芯复合板柱面成形的数值模拟及试验[J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[9] 刘子武, 李剑峰. 叶片材料FV520B再制造熔覆层冲蚀损伤行为及评价[J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[10] 刘纯国, 刘伟东, 邓玉山. 多点冲头主动加载路径对薄板拉形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[11] 付文智, 刘晓东, 王洪波, 闫德俊, 刘晓莉, 李明哲, 董玉其, 曾振华, 刘桂彬. 关于1561铝合金曲面件的多点成形工艺[J]. 吉林大学学报(工学版), 2017, 47(6): 1822-1828.
[12] 张志强, 刘从豪, 何东野, 李湘吉, 李纪萱. 基于性能梯度分布的硼钢热冲压工艺对形状精度的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[13] 王辉, 周杰, 熊煜, 陶亚平, 向荣. 基于逆向工程的复杂曲面冲压件回弹补偿[J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[14] 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[15] 邢海燕, 葛桦, 李思岐, 杨文光, 孙晓军. 基于模糊隶属度最大似然估计的焊缝隐性缺陷磁记忆信号识别[J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!