吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1780-1787.doi: 10.13229/j.cnki.jdxbgxb.20230811
张光硕1(
),张世巍2,秦阳榛1,乌扶临1,姜博1,路宏敏1(
)
Guang-shuo ZHANG1(
),Shi-wei ZHANG2,Yang-zhen Qin1,Fu-lin WU1,Bo JIANG1,Hong-min LU1(
)
摘要:
针对现有无线通信系统电磁兼容性(EMC)评估方法或模型的局限性,以及车载通信系统的实际需求,考虑车载通信系统EMC评估的完整性与准确性,构建了一种涉及工作环境、信号频谱、接收机灵敏度、天线隔离度和通信性能因素的五级评估模型。以某装甲车辆车载通信系统为例的验证实验表明,该模型能够评估车载电台工作环境和信号频谱间是否存在干扰;接收机灵敏度下降的计算误差为5.8%;车载天线隔离度的计算值与实测值吻合良好;仿真分析了车载数字通信系统性能较优的调制模式和编码模式,接收机灵敏度减小6 dB时,车辆通信距离下降50%。仿真结果和实测结果表明,模型适用于装甲车辆车载通信系统的EMC评估。
中图分类号:
| [1] | Wang K B, Lu H M, Chen C C, et al. Modeling of system-level conducted EMI of the high-voltage electric drive system in electric vehicles[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(3): 741-749. |
| [2] | Wang K B, Lu H M, Li X J, et al. High-frequency modeling of the high-voltage electric drive system for conducted EMI simulation in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2808-2819. |
| [3] | Qian W W, Yang Y L, Peng J H, et al. EMI modeling for vehicle body using characteristic mode analysis[C]∥2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Beijing, China, 2022: 732-734. |
| [4] | 赵晓凡. 新能源车高压电驱动系统电磁兼容关键技术[J]. 安全与电磁兼容, 2018(5): 9-10. |
| Zhao Xiao-fan. Key EMC technologies for high-voltage electrical drive system of new energy vehicle[J]. Safety & EMC, 2018(5): 9-10. | |
| [5] | Konstantinos P. Research on EMI from modern electric vehicles and their recharging systems[C]∥2020 International Symposium on Electromagnetic Compatibility, Rome, Italy, 2020: 1-6. |
| [6] | 系统电磁环境效应试验方法 [S]. |
| [7] | Alain A. EMC performances of a land army vehicle to respect integrated radios reception sensitivity: typical performances needed for "fitted for radio (ffr)" land vehicle[C]∥International Symposium on Electromagnetic Compatibility, Los Angeles, USA, 2018: 303-308. |
| [8] | Zhao T, Liu X M, Sun P, et al. EMC vehicle-level layout design for railway vehicles in complex electromagnetic environment[C]∥11th International Conference on Information Technology in Medicine and Education, Wuyishan, China, 2021: 231-236. |
| [9] | 赵晓凡. 基于功能安全的电磁兼容及防护技术[J]. 微波学报, 2018, 34(): 406-409. |
| Zhao Xiao-fan. Electromagnetic compatibility and protection technology based on functional safety[J]. Journal of Microwaves, 2018, 34(Sup.2): 406-409. | |
| [10] | Zhang P C, Sun Y T, Leung H, et al. A novel approach for qos prediction based on bayesian combinational model[J]. China Communications, 2016, 13(11): 269-280. |
| [11] | Marc P, Marco A, Ferran S. Measurement and evaluation techniques to estimate the degradation produced by the radiated transients interference to the GSM system[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1382-1390. |
| [12] | 张世巍,赵晓凡. 军用车辆外部射频干扰试验测试技术研究[J]. 宇航计测技术, 2016, 36(1): 7-13. |
| Zhang Shi-wei, Zhao Xiao-fan. Research of external rf immunity test technique for military vehicles[J]. Journal of Astronautic Metrology and Measurement, 2016, 36(1): 7-13. | |
| [13] | 赵家升, 杨显清, 杨德强. 电磁兼容原理与技术[M]. 北京: 电子工业出版社, 2012. |
| [14] | Zhou P, Lv Y H, Chen Z H, et al. System-level EMC assessment for military vehicular communication systems based on a modified four-level assessment model[J]. China Communications, 2018, 15(8): 39-53. |
| [15] | 李修和. 战场电磁环境建模与仿真[M]. 北京: 国防工业出版社, 2014. |
| [16] | 路宏敏, 余志勇, 李万玉. 工程电磁兼容[M]. 西安: 西安电子科技大学出版社, 2019. |
| [17] | 武南开, 苏东林, 何洪涛, 等. 机载超短波电台邻道干扰减敏特性建模与评估[J]. 北京航空航天大学学报, 2017, 43(3): 481-487. |
| Wu Nan-kai, Su Dong-lin, He Hong-tao, et al. Modeling and evaluation of adjacent channel interference desensitization characteristics of airborne ultra-short wave radio [J]. Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(3): 481-487. | |
| [18] | ITU-R P. The concept of transmission loss for radio links: 341-7[Z]. Geneva: International Telecommunication Union-Radiocommunication Sector, 2019. |
| [19] | Malmstrom J, Frid H, Jonsson B L G, et al. Approximate methods to determine the isolation between antennas on vehicles[C]∥2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Okinawa, Japan, 2016: 131-132. |
| [20] | 张光硕. 装甲车车载天线系统电磁兼容分析[D]. 西安:西安电子科技大学电子工程学院, 2015. |
| Zhang Guang-shuo. Electromagnetic compatibility analysis of vehicle antenna system of armored vehicle [D]. Xi'an: School of Electronic Engineering, Xidian University, 2015. | |
| [21] | 军用无线电台车通用规范 [S]. |
| [22] | 通信设备话音质量与等级标准与评测方法 [S]. |
| [1] | 惠冰,刘伟,周宇坤,李淑琪. 强侧风作用下桥隧连接段行车仿真与安全性分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2312-2320. |
| [2] | 赵昱,霍亚飞. 强电磁脉冲下车辆线束快速等效方法[J]. 吉林大学学报(工学版), 2019, 49(3): 1009-1016. |
| [3] | 杨诚, 宋萍, 彭文家, 金昊龙, 潘志强. 基于混合总线的装甲车辆实车综合测试系统设计[J]. 吉林大学学报(工学版), 2018, 48(1): 186-198. |
| [4] | 杨诚, 宋萍, 彭文家, 邓高寿, 刘雄军. 装甲车辆综合测试系统上位机平台设计[J]. 吉林大学学报(工学版), 2017, 47(6): 1796-1803. |
| [5] | 田丽媛,王庆年,王鹏宇. 双电机混合动力系统FlexRay网络开发[J]. 吉林大学学报(工学版), 2014, 44(3): 585-591. |
|