吉林大学学报(工学版)

• • 上一篇    下一篇

交通流视频检测中背景模型与阴影检测算法

李志慧1,2,张长海2,曲昭伟1,王殿海1   

  1. 1.吉林大学 交通学院,长春 130022; 2. 吉林大学 计算机科学与技术学院,长春 130012)
  • 收稿日期:2005-11-03 修回日期:2006-01-12 出版日期:2006-11-01 发布日期:2006-11-01
  • 通讯作者: 曲昭伟

Background extraction model and shadow detection algorithm in traffic flow video detection

Li Zhi-hui1,2, Zhang Chang-hai2,Qu Zhao-wei1,Wang Dian-hai1
  

  1. 1.College of Transportation, Jilin University, Changchun 130022, China; 2.College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2005-11-03 Revised:2006-01-12 Online:2006-11-01 Published:2006-11-01

摘要:

提出了基于对象级的混合高斯背景模型更新方法与基于RGB颜色变化度的运动阴影检测算法。根据运动分割、物体识别、Kalman运动跟踪等高层语义表达,结合像素的时空特性,进行基于对象级的混合高斯背景更新。克服了像素级混合高斯模型中交通控制信号或交通阻塞等造成的长时间停车以及交通高峰期交通拥挤等情况下对背景抽取造成的影响;根据运动目标的RGB颜色变化度特点,提出自适应的对象级运动阴影检测算法,克服了运动阴影的影响及其造成的误分类。不同交通状态下的视频处理效果表明,该方法具有良好的鲁捧性和自适应性。

关键词: 计算机应用, 视频检测, 背景提取模型, 阴影检测, 交通流检测

Abstract: To alleviate the difficulties in the detection and recognition of the moving objects, even the possibility of the object misclassification, due to the effect of the variation of the moving object shadow and the background factors, a mixed Gaussian background update model based on the object level and a moving object shadow detection algorithm based on the RGB color variation degree were proposed. It performs the mixed Gaussian background update according to the object highlevel semantic expressions, such as movement segmentation, object recognition, Kalman movement tracking, etc., in the light of spatio temporal features of the pixels, eliminates the effect of the prolonged traffic standstill due to the traffic control signs and the rushtime traffic congestion on the background extraction in the mixed Gaussian model based on the pixel level, avoids the object misclassification due to effect of the moving shadows. The results of experiment on the video pictures of different traffic conditions showed the proposed technique is robust and selfadaptive.

Key words: computer application, video detection, background extraction model, shadow detection, traffic flow detection

中图分类号: 

  • U121
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!