吉林大学学报(工学版)

• • 上一篇    下一篇

基于分布匹配的主动轮廓模型及其图像分割算法

陈宗海1,2,方伟1,陈会勇1,王智灵1   

  1. 1.中国科学技术大学 自动化系 多媒体计算与通信教育部-微软重点实验室,合肥 230027;2.中国科学院 自动化研究所 模式识别国家重点实验室,北京 100080
  • 收稿日期:2007-07-03 修回日期:1900-01-01 出版日期:2008-11-01 发布日期:2008-11-01
  • 通讯作者: 陈宗海

Active contour model based on distribution matching and its image segmentation algorithm

CHEN Zong-hai1,2,FANG Wei1,CHEN Hui-yong1,WANG Zhi-ling1

  

  1. 1.MOEMS Key Laboratory of Multimedia Calculation and Communication, Department of Automation,University of Science and Technology of China,Hefei 230027,China;2.China National Laboratory of Pattern Recognition,Institute of Automation,The Chinese Academy of Sciences,Beijing 100080,China
  • Received:2007-07-03 Revised:1900-01-01 Online:2008-11-01 Published:2008-11-01

摘要:

针对运动目标跟踪的快速性和鲁棒性要求,提出了基于分布匹配的主动轮廓模型,该模型将模板和候选区域的分布匹配标准——相对熵(即KullbackLeibler距离)作为主动轮廓的外部能量,使用目标和背景全图像的匹配,克服了跟踪过程中噪声的影响。同时根据匹配力构建帧内和帧间的运动向量,加快了序列图像分割速度。相比于现有的基于边缘、块匹配、区域匹配的主动轮廓模型,该模型具有更好的噪声鲁棒性及在跟踪过程中容忍目标旋转和较大位移的能力。实验验证了该模型的有效性。

关键词: 计算机应用, 分布匹配, 主动轮廓模型, 序列图像分割, 运动目标跟踪

Abstract:

A new active contour model based on distribution matching is proposed, In which the speediness and robust demands for motion object tracking are taken into account. In this model the KullbackLeibler divergence is regarded as the external energy of the active contour. The influence of noise in the object tracking process can be overcome by using the distribution matching of object and background. Also the motion vector established from the matching force can accelerate the sequential image segmentation. Compared with existing methods, such as edge based, block matching based, region matching based active contour models, the proposed model is more robust to noise, and more tolerant to object rotation and larger displacement in the tracking process. The efficiency of the proposed model is verified by experiments.

Key words: computer application, distribution matching, active contour model, sequential image segmentation, motion object tracking

中图分类号: 

  • TP391
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[11] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] 侯永宏, 王利伟, 邢家明. 基于HTTP的动态自适应流媒体传输算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!