Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (5): 1514-1528.doi: 10.13229/j.cnki.jdxbgxb.20210931

Previous Articles    

Design and experiment of side row cotton straw returning and residual film recovery combined machine

Si-lin CAO1,2(),Jian-hua XIE1,3(),Yu-xin YANG1,Yong-rui LIU2,Yong-tao LU2,Bo SUN2   

  1. 1.College of Mechanical and Electrical Engineering,Xinjiang Agricultural University,Urumqi 830052,China
    2.Mechanical Equipment Research Institute,Xinjiang Academy of Land Reclamation Sciences,Shihezi 832011,China
    3.Xinjiang Key Laboratory of Intelligent Agricultural Equipment,Urumqi 830052,China
  • Received:2021-09-15 Online:2023-05-01 Published:2023-05-25
  • Contact: Jian-hua XIE E-mail:125489233@qq.com;xjh199032@163.com

Abstract:

In order to meet the needs of 'containing increments' of residual film pollution control in Xinjiang cotton areas, and improve the problems of high power consumption, large dust, low residual film recovery rate, short unloading distance and poor separation effect of membrane stalk in the residual film recovery machine after autumn, a combined operation machine of side row cotton straw returning and residual film recovery was designed. At the same time, many operations were completed such as crushing cotton straw side returning, picking residual film, separating membrane miscellaneous, collecting and compressing, unloading and accumulation. The crushed cotton straw were transmitted to the membrane junction line by spiral stirrer. The depth limit roller was used to imitate the ground to ensure the stability of the stubble height and achieve the stability of the depth of the residual film pickup spring tooth into the soil. In the process of picking up residual films, wind cleaning was used to realize secondary cleaning in the process of picking up residual film and reduce the impurity rate of residual film after recycling. The recovered residual film was compacted by conveying device to improve the loading capacity. The main working parts were designed and analyzed, the functional principle of picking, unloading and compressing residual film were expounded,and the structure and working parameters of the main parts were determined. The response surface test of three factors and three levels was designed by using Design-Expert software. The results showed that the optimum operating parameters of the machine were as follows: the operating speed of the machine was 1.09 m/s, the stubble height was 9.37 cm, the depth of the spring-tooth into the soil was 4.07 cm, and the of cotton straw crushing qualified rate, the film picking up rate and the residual film impurity rate were 96.20%, 88.48% and 12.00%,respectively. The rounded operation parameters were used for experimental verification. The test results showed that the cotton straw crushing qualified rate was 94.83%, the film picking up rate was 87.26%, and the residual film impurity rate was 12.23%. The test results showed that the error between the cotton straw crushing qualified rate, the film picking up rate and the residual film impurity rate and the theoretical optimization value was 1.4%, 0.3% and 1.9%respectively. The research methods and results can provide reference for the research of related equipment.

Key words: agricultural machinery, residual film recovery, straw returning, design, impurity cleaning, integration of operation

CLC Number: 

  • S223.5

Fig.1

Structure diagram of side row cotton straw returning and residual plastic film recovery combined operation machine"

Table 1

Main technical parameters of machine"

参 数数值

整机尺寸(长×宽×高)

/(mm×mm×mm)

6750×2850×2980
配套动力/kW88.2
工作幅宽/mm2200
留茬高度/cm≤10
拾膜率/%≥85
膜杂分离率/%≥70
集膜箱容积/m35.9
作业速度/(km·h-16~8
单次作业面积/hm21.0

Fig.2

Structure diagram of bilateral output straw crushing and returning device"

Fig.3

Structure of crushing knife roll"

Fig.4

Film pickup device"

Fig.5

Working process of film pickup device"

Fig.6

Structure diagram of residual film compaction device"

Fig.7

Schematic diagram of motion model of two-crank slider mechanism of residual film compaction device"

Fig.8

Movement analysis diagram of film pressing mechanism"

Fig.9

Shear fork type film unloading device"

Fig.10

Structural drawing of scissor arm"

Fig.11

Stress diagram of the scissor arm mechanism"

Fig.12

Field experiment"

Table 2

Test factors and levels"

水平

机具作业速度

X1/(m·s-1

留茬高度

X2/cm

弹齿入土深度

X3/cm

-1163
01.584
12105

Table 3

Test plans and results"

试验序号

机具作业速度

X1/(m·s-1

留茬高度

X2/cm

弹齿入土深度

X3/cm

秸秆粉碎合格率

η1/%

拾膜率

η2/%

残膜含杂率

η3/%

101193.2580.6811.24
200091.2886.7310.31
3-11098.2186.7313.55
4-10-193.1588.8114.51
510-193.1880.1217.24
600093.6887.3410.52
700093.1388.6310.23
81-1092.8782.6115.66
900093.2784.5710.67
1011090.0578.2116.27
11-1-1094.2190.5413.65
1201-195.4781.9513.02
1310190.4478.3116.17
1400092.8585.1610.85
150-1-192.4586.9113.51
160-1192.0783.1811.88
17-10194.5686.3613.14

Table 4

Analysis of test results"

变异来源自由度秸秆粉碎合格率η1/%拾膜率η2/%残膜含杂率η3/%
平方和F显著水平P平方和F显著水平P平方和F显著水平P
模型948.254.460.0307*212.3415.060.0009**83.5876.84<0.0001**
X1123.0919.220.0032**137.7087.91<0.0001**13.76113.82<0.0001**
X213.623.010.126230.6919.600.0031**0.0480.400.5484
X311.931.610.245410.726.840.0346*4.2835.400.0006**
X1X2111.639.680.0170*0.0870.0560.82040.131.040.3412
X1X314.313.580.10020.100.0650.80550.0220.190.6791
X2X310.850.700.42901.510.970.35845.625×10-30.0470.8353
X1210.280.230.64413.202.040.196053.35441.44<0.0001**
X2212.281.890.21115.023.200.11662.1017.420.0042**
X3210.300.250.632220.6413.180.0084**5.9649.300.0002**
残差78.4110.960.85
失拟35.001.960.26260.150.0180.99610.593.010.1572
误差43.4110.810.26
总和1656.66223.3084.42

Fig.13

Effects of interaction of various factors on film pickup rateand residual film impurity rate"

Table 5

Results comparison between theoretical optimum and field experiment"

项 目秸秆粉碎合格率η1/%

拾膜率

η2/%

残膜含杂率

η3/%

理论优化值96.2087.4812.00
试验值94.8387.2612.23
相对误差1.41.41.9
1 何文清, 严昌荣, 刘爽, 等.典型棉区地膜应用及污染现状的研究[J].农业环境科学学报, 2009, 28(8): 1618-1622.
He Wen-qing, Yan Chang-rong, Liu Shuang, et al. The use of plastic mulch film in typical cotton planting regions and the associated environmental pollution[J]. Journal of Agro-Environment Science, 2009, 28(8): 1618-1622.
2 白云龙, 李晓龙, 张胜, 等.内蒙古地膜残留污染现状及残膜回收利用对策研究[J].中国土壤与肥料, 2015(6): 139-145.
Bai Yun-long, Li Xiao-long, Zhang Sheng, et al. Study on the current situation of plastic film residue pollution and the countermeasures for the recovery and utilization of residual film in Inner Mongolia[J]. Soil and Fertilizer Sciences in China, 2015(6): 139-145.
3 李斌, 王吉奎, 蒋蓓.新疆棉区残膜污染及其治理技术[J].农机化研究, 2012, 34(5): 228-232.
Li Bin, Wang Ji-kui, Jiang Bei. The ysed plastic film pollution and treatment technology in Xinjiang cotton area[J]. Journal of Agricultural Mechanization Research, 2012, 34(5): 228-232.
4 程宏波, 柴守玺, 陈玉章, 等.西北旱地春小麦不同覆盖措施的温度和产量效应[J].生态学报, 2015, 35(19): 6316-6325.
Cheng Hong-bo, Chai Shou-xi, Chen Yu-zhang, et al. Effect of mulching method on soil temperature and grain yield of spring wheat in rainfed agricultural areas of northwestern China[J]. Acta Ecologica Sinica, 2015, 35(19): 6316-6325.
5 严昌荣, 刘恩科, 舒帆, 等.我国地膜覆盖和残留污染特点与防控技术[J].农业资源与环境学报, 2014, 31(2): 95-102.
Yan Chang-rong, Liu En-ke, Shu Fan, et al. Review of agricultural plastic mulching and its residual pollution and prevention measures in china[J]. Journal of Agricultural Resources and Environment, 2014, 31(2): 95-102.
6 赵岩, 陈学庚, 温浩军, 等.农田残膜污染治理技术研究现状与展望[J].农业机械学报, 2017, 48(6): 1-14.
Zhao Yan, Chen Xue-geng, Wen Hao-jun, et al. Research status and prospect of control technology for residual plastic film pollution in farmland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(6): 1-14.
7 蒋德莉, 陈学庚, 颜利民, 等.农田残膜资源化利用技术与装备研究[J].中国农机化学报, 2020, 41(1): 179-190.
Jiang De-li, Chen Xue-geng, Yan Li-min, et al. Research on technology and equipment for utilization of residual film in farmland[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(1): 179-190.
8 朱金儒, 李文昊, 王振华, 等.覆膜滴灌棉田地膜残留量对棉花生长的影响[J].干旱区研究, 2021, 38(2): 570-579.
Zhu Jin-ru, Li Wen-hao, Wang Zhen-hua, et al. Effect of film mulching residue on cotton growth in drip irrigation cotton field[J]. Arid Zone Reserarch, 2021, 38(2): 570-579.
9 梁荣庆, 陈学庚, 张炳成, 等.新疆棉田残膜回收方式及资源化再利用现状问题与对策[J].农业工程学报, 2019, 35(16): 1-13.
Liang Rong-qing, Chen Xue-geng, Zhang Bing-cheng, et al. Problems and countermeasure of recycling methods and resource reuse of residual film in cotton fields of Xinjiang[J]. Transactions of the CSAE, 2019, 35(16): 1-13.
10 胡灿, 王旭峰, 陈学庚, 等.新疆农田残膜污染现状及防控策略[J].农业工程学报, 2019, 35(24): 223-234.
Hu Can, Wang Xu-feng, Chen Xue-geng, et al. Current situation and control strategies of residual film pollution in xinjiang[J]. Transactions of the CSAE, 2019, 35(24): 223-234.
11 李东, 赵武云, 辛尚龙, 等.农田残膜回收技术研究现状与展望[J].中国农机化学报, 2020, 41(5): 204-209.
Li Dong, Zhao Wu-yun, Xin Shang-long, et al. Current situation and prospect of recycling technology of farmland residual film[J]. Transactions of the CSAE, 2020, 41(5): 204-209.
12 史增录, 唐学鹏, 甄军, 等.钉齿式残膜捡拾机构运动仿真分析及性能试验[J].农业工程学报, 2019, 35(4): 64-71.
Shi Zeng-lu, Tang Xue-peng, Zhen Jun, et al. Performance test and motion simulation analysis of nail tooth type mechanism for collecting plastic residue [J]. Transactions of the CSAE, 2019, 35(4): 64-71.
13 唐永飞, 赵永满, 王吉奎, 等.夹指链式残膜回收机脱膜装置设计与试验[J].农业工程学报, 2020, 36(13): 11-19.
Tang Yong-fei, Zhao Yong-man, Wang Ji-kui, et al. Design and experiment of film removing device for clamping finger-chain type residual film collector[J]. Transactions of the CSAE, 2020, 36(13): 11-19.
14 杨松梅, 陈学庚, 颜利民, 等.残膜回收机带式卷膜装置设计与试验[J].农业机械学报, 2021, 52(2): 135-144.
Yang Song-mei, Chen Xue-geng, Yan Li-min, et al. Design and experiment on belt-type curl-up film device for residual plastic film recycling machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 135-144.
15 李景彬, 杨禹锟, 温宝琴, 等.基于根茬检测的秋后残膜回收导航路径提取方法[J].吉林大学学报: 工学版, 2021, 51(4): 1528-1539.
Li Jing-bin, Yang Yu-kun, Wen Bao-qin, et al. Method of extraction of navigation path of post-autumn residual film recovery based on stubble detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1528-1539.
16 施丽莉, 胡志超, 顾峰玮, 等.耙齿式垄作花生残膜回收机设计及参数优化[J].农业工程学报, 2017, 33(2): 8-15.
Shi Li-li, Hu Zhi-chao, Gu Feng-wei, et al. Design on automatic unloading mechanism for teeth type residue plastic film collector[J]. Transactions of the CSAE, 2017, 33(2): 8-15..
17 于福锋, 李平, 张凤奎, 等.链耙式棉田耕层残膜回收机设计[J].农业工程, 2019, 9(10): 100-104.
Yu Fu-feng, Li Ping, Zhang Feng-kui, et al. Design of chain-type cotton field plough layer residual film recovery machine[J]. Agricultural Engineering, 2019, 9(10): 100-104.
18 闫盼盼, 曹肆林, 罗昕, 等.弹齿链耙式播前残膜回收机的设计研究[J].农机化研究, 2016, 38(6): 137-142.
Yan Pan-pan, Cao Si-lin, Luo Xin, et al. Research on the spring-tooth-chain-harrow incomplete plastic film recycling machine[J]. Journal of Agricultural Mechanization Research, 2016, 38(6): 137-142.
19 康建明, 彭强吉, 王士国, 等.弹齿式残膜回收机捡拾装置改进设计与试验[J].农业机械学报, 2018, 49(): 295-303.
Kang Jian-ming, Peng Qiang-ji, Wang Shi-guo, et al. Improved design and experiment on pickup unit of spring-tooth residual plastic film collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(Sup.1): 295-303.
20 王昭宇, 陈学庚, 颜利民, 等.随动式残膜回收机起膜捡拾机构设计与试验[J].农业机械学报, 2021, 52(4): 80-90.
Wang Zhao-yu, Chen Xue-geng, Yan Li-min, et al. Design and experiment on collecting and removing device for profile modeling residual plastic film collector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 80-90.
21 谢建华, 杨豫新, 曹肆林, 等.导向链耙式地表残膜回收机设计与试验[J].农业工程学报, 2020, 36(22): 76-86.
Xie Jian-hua, Yang Yu-xin, Cao Si-lin, et al. Design and experiments of rake type surface residual film recycling machine with guide chain[J]. Transactions of the CSAE, 2020, 36(22): 76-86.
22 张慧明, 陈学庚, 颜利民, 等.随动式秸秆还田与残膜回收联合作业机设计与试验[J].农业工程学报, 2019, 35(19): 11-19.
Zhang Hui-ming, Chen Xue-geng, Yan Li-min, et al. Design and test of master-slave straw returning and residual film recycling combine machine[J]. Transactions of the CSAE, 2019, 35(19): 11-19.
23 . 螺旋输送机 [S].
24 秦宽, 曹成茂, 廖移山, 等.秸秆还田施肥点播机粉碎抛撒装置结构设计与优化[J].农业工程学报, 2020, 36(3): 1-10.
Qin Kuan, Cao Cheng-mao, Liao Yi-shan, et al. Design and optimization of crushing and throwing device for straw returning to field and fertilizing hill-seeding machine[J]. Transactions of the CSAE, 2020, 36(3): 1-10.
25 陈兴华, 陈学庚, 李景彬, 等.钉齿滚筒式播前残膜回收装置设计与试验[J].农业工程学报, 2020, 36(2): 30-39.
Chen Xing-hua, Chen Xue-geng, Li Jing-bin, et al. Design and test of nail-teeth roller-type residual film recovery device before sowing[J]. Transactions of the CSAE, 2020, 36(2): 30-39.
26 张学军, 黄爽, 史增录, 等.残膜捡拾打包机的设计与试验[J/OL]. [2021-09-15].
27 刘建良, 张具安.双剪叉升降平台结构设计及有限元仿真[J]. 煤炭科学技术, 2018, 46(): 193-195。
Liu Jian-liang, Zhang Ju-an. Finite elements simulation and structural design of scissors elevating platform[J]. Coal Science and Technology, 2018, 46(Sup.1):193-195.
28 残地膜回收机 [S]
29 保护性耕作机械 秸秆粉碎还田机 [S]
30 张学军, 刘家强, 史增录, 等.残膜回收机逆向膜土分离装置的设计与参数优化[J].农业工程学报, 2019, 35(4): 46-55.
Zhang Xue-jun, Liu Jia-qiang, Shi Zeng-lu, et al. Design and parameter optimization of reverse membrane and soilseparation device for residual film recovery machine[J]. Transactions of the CSAE, 2019, 35(4): 46-55.
31 严伟, 胡志超, 吴努, 等.铲筛式残膜回收机输膜机构参数优化与试验[J].农业工程学报, 2017, 33(1): 17-24.
Yan Wei, Hu Zhi-chao, Wu Nu, et al. Parameter optimization and experiment of film transmission mechanism of spade screen recovery machine[J]. Transactions of the CSAE, 2017, 33(1): 17-24.
32 施丽莉, 胡志超, 顾峰玮, 等.耙齿式垄作花生残膜回收机设计及参数优化[J].农业工程学报, 2017, 33(2): 8-15.
Shi Li-li, Hu Zhi-chao, Gu Feng-wei, et al. Design on automatic unloading mechanism for teeth type residue plastic film collector[J]. Transactions of the CSAE, 2017, 33(2): 8-15.
[1] Hui ZHANG,Zhi-ling NIE,Hong-wei XIAO,Dan-xing WANG. Color design of human⁃computer interaction interface for intelligent cockpit of unmanned vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1315-1321.
[2] Xue-jun ZHANG,Shuang HUANG,Zeng-lu SHI,Yong-liang YU,Xin-cheng ZHOU,Wei JIN,Yong CHEN,Jia HONG. Design and test of the remaining film picking and baling machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1220-1230.
[3] Ben-huai LI,Yan-wen LIU,Lu WANG,Xue-qian CHEN,Wen-jie ZUO. Crashworthiness optimization for frontal⁃end structure of rail vehicle constrained with absorbed energy and crushed displacements [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 982-988.
[4] Jing-fu JIN,Xin-ju DONG,Zhi-cheng JIA,Kang WANG,Lian-bin HE,Meng ZOU,Ying-chun QI. Optimization of the tread plate-spring structure of flexible metal wheel with plate-spring [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 964-972.
[5] Sheng LI,Jia ZHU,De-hui HUANG,Cun-fu CHEN,Hong-qing FEI,Wei FENG,Xing-jun HU. Structural parameters optimization of louver fins of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 998-1006.
[6] Fan YANG,Chen-chen LI,Sheng LI,Hai-lun LIU. Numerical simulation of continuously reinforced concrete pavement with double⁃layer reinforcement under effect of temperature shrinkage [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1122-1132.
[7] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU,Wen-ming WANG. Design and experiment of bionic ear picking device for fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1231-1244.
[8] Yan YANG,Yu-qing SHI,Xiao-rong ZHANG,Guan-wei LUO. Dynamic stability analysis of a amplitude⁃limited vibration system with multiple rigid constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 364-375.
[9] Zhuang-zhuang LIU,You-wei ZHANG,Peng-yu JI,Abshir Ismail Yusuf,Lin LI,Ya-zhen HAO. Study on heat transfer characteristics of electric heating snow melting asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
[10] Xiao-bo LUO,Yu SONG,Teng WANG,Zi-qiu JIN,Guo-xin XIE. Parameter design and mechanical performance of a new type of fractal buckling restrained brace [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1607-1619.
[11] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[12] Yang LIU. Unloading impact simulation and test of luffing jib tower crane [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1292-1300.
[13] Ya-bing CHENG,Lu-xiang CHEN,Ping-yu GE,Ze-yu YANG,Peng-yu CAO. Dynamic simulation analysis and wear failure of dual-phase timing bush chain [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 781-788.
[14] Yang ZHAO,Yang XIAO,Hao SUN,Wen-hao HUO,Song FENG,Yong LIAO. Numerical simulation of micro pitting damage characteristics of lubricated contact gears based on contour integral [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 799-810.
[15] Ying-chao ZHANG,Yun-hang LI,Zi-yu GUO,Guo-hua WANG,Zhe ZHANG,Chang SU. Optimization of the aerodynamic drag reduction of a cab behind engine vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 745-753.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!