Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (7): 2089-2098.doi: 10.13229/j.cnki.jdxbgxb.20210983

Previous Articles    

Squeezed branch pile groups optimization method based on improved genetic algorithm

Ying-xin HUI1,2,3(),Jia-wei CHEN1   

  1. 1.School of Civil and Hydraulic Engineering,Ningxia University,Yinchuan 750021,China
    2.Ningxia Communications Construction Co. ,Ltd. ,Yinchuan 750004,China
    3.Ningxia Engineering Technology Research Center for Maintenance,Yinchuan 750004,China
  • Received:2021-09-28 Online:2023-07-01 Published:2023-07-20

Abstract:

The disk-shaped settlement distribution of pile group may cause secondary stress, which possibly leads to overall tilting and cracking of the building. Therefore, it is necessary to optimize the design of the squeezed branch pile group. Based on this, we took an improved genetic algorithm to refine the method. The calculated top axial force of pile group was grouped according to the sizes, the number of bearing discs in each group of piles were used as the design variables. Then, a model with the minimum-number discs subject to the constraints of the bearing capacity and the maximum settlement and settlement difference was built. With the help of Python language, ABAQUS was developed to establish an automatic optimization platform to solve the above optimization model and obtain the best pile group arrangement. Result shows that the optimized pile group foundation can reduce the number of bearing discs while decreasing the differential settlement, leading to the uniform deformation of the raft slab and pile top forces, which are beneficial to use the structure securely.

Key words: geotechnical engineering, squeezed branch pile, pile foundation optimization, genetic algorithm, variable stiffness leveling

CLC Number: 

  • TU473.1

Fig.1

Schematic diagram of chromosome coding"

Fig.2

Schematic diagram of population cross operation"

Fig.3

Schematic diagram of population mutationoperation"

Fig.4

Procedure of squeezed branch pile group optimization"

Table 1

Model parameters for finite element calculation of soils"

类别厚度/mγ/(kN·m-3E/MPaν/kPac/kPaφ/(°)
桩身-25.03.0×1040.15--
承台1.525.03.15×1040.15--
土13.518.024.60.308.28.3
土25.018.527.10.3015.418.0
土315.019.036.00.3028.020.8
土420.019.340.00.3030.022.5

Fig.5

Schematic diagram of squeezed branch pilegroup foundation (unit: m)"

Fig.6

Overall model of squeezed branch pile groupfoundation"

Fig.7

Region division of piled raft foundation"

Table 2

Grouping situation of pile group"

组别G1G2G3G4G5G6G7G8
桩数91612842084

Fig.8

Schematic diagram of characteristic parametersof squeezed branch pile group foundation(unit: m)"

Fig.9

Schematic diagram of optimization design scheme of pile group"

Table 3

Distribution situation of bearing discs"

承力盘数G1G2G3G4G5G6G7G8
设计承力盘数44444444
优化承力盘数64200000

Fig.10

Comparison of settlement of raft before andafter optimization design"

Table 4

Comparison of optimization results of pile group foundation"

方案最大沉降值/mm最小沉降值/mm沉降差异值/mm桩顶轴力最大值/kN桩顶轴力最小值/kN桩顶轴力差异值/kN
设计方案70.157.612.52381.41056.61324.8
优化方案72.164.57.61572.31154.2418.1

Fig.11

Distribution of settlement on top of piles atcenterline"

Fig.12

Distribution of axial force on top of piles atcenterline"

1 刘金砺. 高层建筑地基基础概念设计的思考[J]. 土木工程学报, 2006, 39(6): 100⁃105.
Liu Jin-li. Review and optimization of the conceptual design of foundations for high-rise buildings[J].China Civil Engineering Journal, 2006, 39(6): 100-105.
2 郑一峰, 毛健, 梁世忠, 等. 高填土场地考虑土体固结的桩基负摩阻力[J]. 吉林大学学报: 工学版, 2017, 47(4): 1075-1081.
Zheng Yi-feng, Mao Jian, Liang Shi-zhong, et al. Negative skin friction of pile foundation considering soil consolidation in high fill site[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(4): 1075-1081.
3 . 建筑桩基技术规范 [S].
4 Leung Y F, Klar A, Soga K. Theoretical study on pile length optimization of pile groups and piled rafts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(2): 319-330.
5 Leung Y F, Klar A, Soga K, et al. Superstructure-foundation interaction in multi-objective pile group optimization considering settlement response[J]. Canadian Geotechnical Journal, 2017, 54(5): 1408-1420.
6 Jahromi S G, Hoseini A. Optimization of bearing capacity and unsymmetrical settlement of vertical pile group using genetic algorithm[J]. Journal of Structural and Construction Engineering, 2016, 3(1): 59-71.
7 张治国, 张瑞, 黄茂松, 等. 基于差异沉降和轴向刚度控制的竖向荷载作用下群桩基础优化分析[J]. 岩土力学, 2019, 40(6): 2354⁃2368.
Zhang Zhi-guo, Zhang Rui, Huang Mao-song, et al. Optimization analysis of pile group foundation based on controlling differential settlement and axial stiffness under vertical loads[J]. Rock and Soil Mechanics, 2019, 40(6): 2354-2368.
8 Rasim T, Cihan Ö. Optimization of pile groups under vertical loads using grey wolf optimizer[J]. Politeknik Dergisi, 2019: 19-32.
9 韩小雷, 陈贤才, 黄狄昉. 基于拓扑优化方法实现桩筏基础的变刚度调平[J]. 华中科技大学学报: 自然科学版, 2020, 48(4): 24-29.
Han Xiao-lei, Chen Xian-cai, Huang Di-fang. Variable stiffness leveling of piled raft foundation based on topology optimization method[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(4): 24-29.
10 张武, 迟铃泉, 高文生, 等. 变刚度桩筏基础变形特性试验研究[J]. 建筑结构学报, 2010, 31(7): 94-102.
Zhang Wu, Chi Ling-quan, Gao Wen-sheng, et al. Experimental study on deformation characteristics of piles with variable stiffness piles[J]. Journal of Building Structures, 2010, 31(7): 94-102.
11 钱晓丽, 张建勋, 林向宇. 高层建筑桩筏基础变刚度调平设计应用[J]. 厦门理工学院学报, 2011, 19(4): 55-60.
Qian Xiao-li, Zhang Jian-xun, Lin Xiang-yu. Application of variable rigidity design for balance settlement in piled raft foundation of high-rise buildings[J]. Journal of Xiamen University of Technology, 2011, 19(4): 55-60.
12 Nguyen D D C, Kim D S, Jo S B. Parametric study for optimal design of large piled raft foundations on sand[J]. Computers and Geotechnics, 2014, 55: 14-26.
13 李金良, 李振宝, 崔伟, 等. 变刚度布桩群桩基础的承载特性[J]. 济南大学学报: 自然科学版, 2020, 34(5): 475-481.
Li Jin-liang, Li Zhen-bao, Cui Wei, et al. Load characteristics of pile group foundation with variable stiffness[J]. Journal of University of Jinan(Science and Technology), 2020, 34(5): 475-481.
14 曹金凤, 王旭春, 孔亮. Python语言在Abaqus中的应用[M]. 北京: 机械工业出版社, 2011: 177-274.
15 刘金波, 黄强. 建筑桩基技术规范理解与应用[M]. 北京: 中国建筑工业出版社, 2008: 171-172.
16 钱德玲. 挤扩支盘桩受力性状的研究[J]. 岩石力学与工程学报, 2003(3): 494-499.
Qian De-ling. Study on bearing behavior of squeezed branch pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(3): 494-499.
17 刘晓峰, 程耿东. 桩基础优化设计的模块化方法[J]. 计算力学学报, 2012, 29(4): 487-493.
Liu Xiao-feng, Cheng Geng-dong. Modular method of pile foundation design optimization[J]. Chinese Journal of Computational Mechanics, 2012, 29(4): 487-493.
18 雷英杰, 张善文. MATLAB遗传算法工具箱及应用[M]. 2版. 西安: 西安电子科技大学出版社, 2014: 43-59.
19 王占中, 赵利英, 曹宁博. 基于多层编码遗传算法的危险品运输调度模型[J]. 吉林大学学报: 工学版, 2017, 47(3): 751-755.
Wang Zhan-zhong, Zhao Li-ying, Cao Ning-bo. Hazardous material transportation scheduling model based on multilayer coding genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 751-755.
20 王伊丽, 徐良英, 李碧青, 等. 挤扩支盘桩竖向承载力特性和影响因素的数值研究[J]. 土木工程学报, 2015, 48(): 158-162.
Wang Yi-li, Xu Liang-ying, Li Bi-qing, et al. Finite element numerical study on the axial bearing behaviors and factors of squeezed branch pile[J]. China Civil Engineering Journal,2015,48(Sup.2): 158-162.
[1] Yan-bo LI,Bai-song LIU,Bo-bin YAO,Jun-shuo CHEN,Kai-fa QU,Qi-sheng WU,Jie-ning CAO. Location of electrical changing station of expressway considering stochastic characteristics of road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1364-1371.
[2] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Multi⁃objective optimization of macro parameters of helical gear based on NSGA⁃Ⅱ [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[3] Min MA,Da-wei HU,Lan SHU,Zhuang-lin MA. Resilience assessment and recovery strategy on urban rail transit network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 396-404.
[4] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[5] Liang TANG,Pan SI,Jie CUI,Xian-zhang LING,Xiao-feng MAN. Pseudo-static analysis method of pile group earthquake response in liquefying mild inclined sloping ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 847-855.
[6] Bin-xiang JIANG,Tong-tong JIANG,Yong-lei WANG. Optimization of consensus algorithm for drug detection block chain based on cultural genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 684-692.
[7] Ping JIANG,Lin ZHOU,Tian-hao MAO,Jun-ping YUAN,Wei WANG,Na LI. Damage model and time effect of cement⁃modified waste slurry [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2874-2882.
[8] Han LI,Peng DU,Ying DU,Xiao-hui LI. Multi-path routing method for wireless body area network based on genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2706-2711.
[9] Cui-yu LI,Ya-meng HU,Ya-wei KANG,De-liang ZHANG. Coordination scheduling of electric vehicle charge and discharge using adaptive genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2508-2513.
[10] Si-feng ZHU,Ming-yang ZHAO,Zheng-yi CHAI. Computing offloading scheme based on particle swarm optimization algorithm in edge computing scene [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2698-2705.
[11] Chuan-hai CHEN,Guo-xiang YAO,Tong-tong JIN,Gui-xiang SHEN,Li-juan YU,Hai-long TIAN. Dynamic modeling and parameter updating of machine tool spindle system based on response surface methodology and genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2278-2286.
[12] Jian-xin FENG,Qiang WANG,Ya-lei WANG,Biao XU. Fuzzy PID control of ultrasonic motor based on improved quantum genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1990-1996.
[13] Zuo-an HU,Yi-ming XIA,Jia CAI,Feng XUE. Optimization of urban rail transit operation adjustment based on multiple strategies under delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1664-1672.
[14] Fei ZHANG,Yu-ming ZHU,Shang-chuan YANG,Shu-mao WANG. Emission mitigation analysis of geosynthetic⁃reinforced walls [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 631-637.
[15] Wen-bin TAO,Jun-ling HOU,Tie-lin CHEN,Bin TANG. Mechanical analysis of full⁃length anchorage with high pretension post⁃tensioning method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 631-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!