1 |
Alex K, Ilya S, Geoffrey E H. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2017, 60(6): 84-90.
|
2 |
Zhang Zhi-zheng, Lan Cui-ling, Zeng Wen-jun, et al. Relation-aware global attention for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3186-3195.
|
3 |
Chen Guang-yi, Lin Chun-ze, Ren Liang-liang, et al. Self-critical attention learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9637-9646.
|
4 |
Fang Peng-fei, Zhou Jie-ming, Kumar Roy Soumava, et al. Bilinear attention networks for person retrieval[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8030-8039.
|
5 |
Sun Yi-fan, Zheng Liang, Yang Yi, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 501-518.
|
6 |
Zhou Kai-yang, Yang Yong-xin, Cavallaro Andrea, et al. Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3702-3712.
|
7 |
Chen Xiao-dong, Liu Xin-chen, Liu Wu, et al. Explainable person re-identification with attribute-guided metric distillation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, Canada, 2021: 11813-11822.
|
8 |
Divyansh G, Netra P, Thomas T, et al. Towards explainable person re-identification[C]//2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, USA, 2021: 1-8.
|
9 |
Chen Guang-yi, Gu Tian-pei, Lu Ji-wen, et al. Person re-identification via attention pyramid[J]. IEEE Transactions on Image Processing, 2021, 30: 7663-7676.
|
10 |
Wang Guan-shuo, Yuan Yu-feng, Chen Xiong, et al. Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Korea(South), 2018: 274-282.
|
11 |
Feng Zheng, Cheng Deng, Xing Sun, et al. Pyramidal person re-identification via multi-loss dynamic training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8514-8522.
|
12 |
本杰明•里贝特. 心智时间: 意识中的时间因素[M]: 李恒熙,李恒威,罗慧怡译.杭州: 浙江大学出版社, 2013:55-56.
|
13 |
Han Yi-zeng, Huang Gao, Song Shi-ji, et al. Dynamic neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 7436-7456.
|
14 |
Teerapittayanon S, McDanel B, Kung H T. Branchynet: fast inference via early exiting from deep neural networks[C]//The 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 2016: 2464-2469.
|
15 |
Hermans Alexander, Beyer Lucas, Leibe Bastian. In defense of the triplet loss for person re-identification. arXiv 2017[J/OL].[2017-04-01]. .
|
16 |
Zheng Liang, Shen Li-yue, Tian Lu, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116-1124.
|
17 |
Zhong Zhun, Zheng Liang, Cao Dong-lin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1318-1327.
|
18 |
Ergys R, Francesco S, Roger Z, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 17-35.
|
19 |
Lin Yu-tian, Zheng Liang, Zheng Zhe-dong, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161.
|
20 |
Jia Deng, Wei Dong, Socher Richard, et al. Imagenet: a large-scale hierarchical image database[C]//IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248-255.
|
21 |
Hyunjong P, Bumsub H. Relation network for person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11839-11847.
|
22 |
Sun Yi-fan, Xu Qin, Li Ya-li, et al. Perceive where to focus: learning visibility-aware part-level features for partial person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 393-402.
|
23 |
Tay C-P, Roy S, Yap K-H. Aanet: attribute attention network for person re-identifications[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7134-7143.
|
24 |
Yang Wen-jie, Huang Hou-jing, Zhang Zhang, et al. Towards rich feature discovery with class activation maps augmentation for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1389-1398.
|
25 |
Chen Bing-hui, Deng Wei-hong, Hu Jia-ni. Mixed high-order attention network for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 371-381.
|
26 |
Chen Xue-song, Fu Can-miao, Zhao Yong, et al. Salience-guided cascaded suppression network for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3300-3310.
|
27 |
Zhao Shi-zhen, Gao Chang-xin, Zhang Jun, et al. Do not disturb me: person re-identification under the interference of other pedestrians[C]//European Conference on Computer Vision, Glasgow, UK, 2020: 647-663.
|