Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (3): 629-642.doi: 10.13229/j.cnki.jdxbgxb20220610
Hong-yang PAN1(),Zhao LIU1,Bo YANG2,Geng SUN1(),Yan-heng LIU1,2
CLC Number:
1 | IMT-2030(6G)推进组正式发布《6G总体愿景与潜在关键技术》白皮书[J]. 互联网天地,2021(6):8-9. |
None Imt-2030 (6G) promotion group officially released the white paper "6G overall vision and potential key technologies"[J]. Internet World, 2021(6): 8-9. | |
2 | Huang C, Zappone A, Alexandropoulos G, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(99): 4157-4170. |
3 | 谢莎, 李浩然, 李玲香, 等. 面向6G网络的太赫兹通信技术研究综述[J]. 移动通信, 2020, 44(6): 36-43. |
Xie Sha, Li Hao-ran, Li Ling-xiang, et al. A Survey of Terahertz communication technologies for 6G networks[J]. Mobile Communication, 2020, 44(6):36-43. | |
4 | Huynh N, Hoang D, Lu X, et al. Ambient backscatter communications: a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889-2922. |
5 | Chen Z, Björnson E. Channel hardening and favorable propagation in cell-free massive MIMO With stochastic geometry[J]. IEEE Transactions on Communications, 2018, 66(11): 5205-5219. |
6 | Akyildiz I, Kak A, Nie S. 6G and beyond: the future of wireless communications systems[J]. IEEE Access, 2020, 8: 133995-134030. |
7 | Tan D, Long D, Duong T, et al. Joint optimisation of real-time deployment and resource allocation for UAV-aided disaster emergency communications[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3411-3424. |
8 | Zhang S, Zhang H, Di B, et al. Joint trajectory and power optimization for UAV relay networks[J]. IEEE Communications Letters, 2017, 22(1): 161-164. |
9 | Li J, Kang H, Sun G, et al. Physical layer secure communications based on collaborative beamforming for UAV networks: a multi-objective optimization approach[C]∥IEEE Conference on Computer Communications, Vancouver, Canada, 2021: 1-10. |
10 | Liu Y, Pan H, Sun G, et al. Joint scheduling and trajectory optimization of charging UAV in wireless rechargeable sensor networks[J]. IEEE Internet of Things Journal, 2021, 9(14): 11796-11813. |
11 | Zhao C, Liu J, Sheng M, et al. Multi-UAV trajectory planning for energy-efficient content coverage: a decentralized learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3193-3207. |
12 | Lei L, Shen G, Zhang L, et al. Toward intelligent cooperation of UAV swarms: when machine learning meets digital twin[J]. IEEE Network, 2020, 35(1): 386-392. |
13 | Chen M, Wang H, Chang C Y, et al. SIDR: a swarm intelligence-based damage-resilient mechanism for UAV swarm networks[J]. IEEE Access, 2020, 8: 77089-77105. |
14 | Zhang X, Luo P, Hu X. Defense success rate evaluation for UAV swarm defense system[C]∥Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, New York, United States, 2018:127-132. |
15 | Ou H, Wu D, Wang S, et al. The research on the efficiency of UAV swarm anti-UAV swarm operations[C]∥International Conference on Man-Machine-Environment System Engineering, Beijing, China, 2021: 341-346. |
16 | Zhou X, Wang W, Wang T, et al. A research framework on mission planning of the UAV swarm[C]∥2017 12th System of Systems Engineering Conference, Waikoloa, United States, 2017: 1-6. |
17 | Cheng C, Bai G, Zhang Y A, et al. Resilience evaluation for UAV swarm performing joint reconnaissance mission[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29(5): No. 053132. |
18 | Silva D, Oliveira F, Macedo M, et al. On the analysis of a swarm intelligence based coordination model for multiple unmanned aerial vehicles[C]∥2012 Brazilian Robotics Symposium and Latin American Robotics Symposium, Fortaleza, Brazil, 2012: 208-213. |
19 | Dong S Y, Zhu X P, Long G Q. Cooperative planning method for swarm UAVs based on hierarchical strategy[C]∥2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization, Chengdu, China, 2012: 304-307. |
20 | 高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271-1278. |
Gao Yang, Li Dong-sheng, Cheng Ze-xin. UAV distributed swarm situation awareness model[J]. Journal of Electronics, 2018, 40(6): 1271-1278. | |
21 | Zhu L, Yao C, Wang L. Optimal energy efficiency distributed relay decision in UAV swarms[J]. Wireless Personal Communications, 2018, 102(4): 2997-3008. |
22 | Zhou Y, Rao B, Wang W. UAV swarm intelligence: recent advances and future trends[J]. IEEE Access, 2020, 8:183856-183878. |
23 | 陈健瑞, 王景璟, 侯向往, 等. 挺进深蓝: 从单体仿生到群体智能[J]. 电子学报, 2021, 49(12): 2458-2467. |
Chen Jian-rui, Wang Jing-jing, Hou Xiang-wang, et al. Advance into ocean: from bionic monomer to swarm intelligence[J]. Journal of Electronics, 2021, 49(12): 2458-2467. | |
24 | Rudolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Transactions on Neural Networks, 1994, 5(1): 96-101. |
25 | Regis R. Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(3): 326-347. |
26 | Das S, Suganthan P. Differential evolution: a survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2010, 15(1): 4-31. |
27 | Li B, Qi X G, Yu B G, et al. Trajectory planning for UAV based on improved ACO algorithm[J]. IEEE Access, 2019, 8: 2995-3006. |
28 | Zhang W, Zhang S, Wu F, et al. Path planning of UAV based on improved adaptive grey wolf optimization algorithm[J]. IEEE Access, 2021, 9: 89400-89411. |
29 | Liang S, Fang Z, Sun G, et al. Charging UAV deployment for improving charging performance of wireless rechargeable sensor networks via joint optimization approach[J]. Computer Networks, 2021, 201: No. 108573. |
30 | Chen E, Chen J, Mohamed A, et al. Swarm intelligence application to UAV aided IoT data acquisition deployment optimization[J]. IEEE Access, 2020, 8: 175660-175668. |
31 | Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization[J]. Information Sciences, 2012, 192(1): 120-142. |
32 | 牛轶峰, 陈钇廷, 陈润丰, 等. 从国家自然科学基金资助角度分析群体智能发展现状与趋势[J]. 中国人工智能学会通讯, 2020, 10(12): 26-30. |
Niu Yi-feng, Chen Yi-ting, Chen Run-feng, et al. Analyze the current situation and trend of swarm intelligence development from the perspective of NSFC funding[J]. Communication of Chinese Artificial Intelligence Society, 2020, 10(12): 26-30. | |
33 | Tang J, Liu G, Pan Q. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1627-1643. |
34 | Blum C, Roli A. Metaheuristics in combinatorial optimization: overview and conceptual comparison[J]. ACM Computing Surveys, 2003, 35(3): 268-308. |
35 | del Valle Y, Venayagamoorthy G K, Mohagheghi S, et al. Particle swarm optimization: basic concepts, variants and applications in power systems[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2): 171-195. |
36 | Khuwaja A A, Chen Y, Zhao N, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2804-2821. |
37 | Shi L, Marcano N J H, Jacobsen R H. A review on communication protocols for autonomous unmanned aerial vehicles for inspection application[J]. Microprocessors and Microsystems, 2021, 86: No.104340. |
38 | Dai F, Chen M, Wei X, et al. Swarm intelligence-inspired autonomous flocking control in UAV networks[J]. IEEE Access, 2019, 7: 61786-61796. |
39 | Howden D. Continuous swarm surveillance via distributed priority maps[C]∥Australian Conference on Artificial Life, Melbourne, Australia, 2009: 221-231. |
40 | Kalantari E, Bor-Yaliniz I, Yongacoglu A, et al. User association and bandwidth allocation for terrestrial and aerial base stations with backhaul considerations[C]∥2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, Canada, 2017: 1-6. |
41 | Sun G, Li J, Liu Y, et al. Time and energy minimization communications based on collaborative beamforming for UAV networks: a multi-objective optimization method[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3555-3572. |
42 | Zheng T, Liu Y, Sun G, et al. Joint optimization of SNR and motion energy consumption for UAV-enabled collaborative beamforming[J]. Wireless Networks, 2022, 28(5): 2001-2016. |
43 | Wang G, Zhou S, Niu Z. Mode selection in UAV-aided vehicular network: an evolutionary game approach[C]∥2018 10th International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2018: 1-6. |
44 | Goudos S, Athanasiadou G. Application of an ensemble method to UAV power modeling for cellular communications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(11): 2340-2344. |
45 | Tang J, Feng W, Zhang Q, et al. Joint 3D trajectory and power optimization for multiple antenna aided NOMA in UAV networks[C]∥2020 International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2020: 369-375. |
46 | Antonio P, Caputo D, Gandelli A, et al. Architecture and methods for UAV-based heterogeneous sensor network applications[C]∥Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Edinburgh, United Kingdom, 2012: 69-78. |
47 | Cheng Y, Liao Y, Zhai X. Energy-efficient resource allocation for UAV-empowered mobile edge computing system[C]∥2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing, Leicester, United Kingdom, 2020: 408-413. |
48 | He S, Chen J, Jiang F, et al. Energy provisioning in wireless rechargeable sensor networks[J]. IEEE Transactions on Mobile Computing, 2012, 12(10): 1931-1942. |
49 | Guo S, Wang C, Yang Y. Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks[J]. IEEE Transactions on Mobile Computing, 2014, 13(12): 2836-2852. |
50 | Zeng Y, Xu J, Zhang R. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329-2345. |
51 | Fu Y, Mei H, Wang K, et al. Joint optimization of 3D trajectory and scheduling for solar-powered UAV systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3972-3977. |
52 | Feng W, Zhao N, Ao S, et al. Joint 3D trajectory design and time allocation for UAV-enabled wireless power transfer networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9265-9278. |
53 | Bekmezci I, Sahingoz O K, Temel Ş. Flying ad-hoc networks (FANETs): a survey[J]. Ad Hoc Networks, 2013, 11(3): 1254-1270. |
54 | 董超, 陶婷, 冯斯梦, 等. 面向无人机自组网和车联网的媒体接入控制协议研究综述[J]. 电子与信息学报, 2022, 44: 1-13. |
Dong Chao, Tao Ting, Feng Si-meng, et al. Overview on medium access control protocol in flying ad-hoc NETworks and vehicular ad-hoc NETworks[J]. Journal of Electronics, 2022, 44: 1-13. | |
55 | Conti M, Giordano S. Mobile ad hoc networking: milestones, challenges, and new research directions[J]. IEEE Communications Magazine, 2014, 52(1): 85-96. |
56 | Gao H, Liu C, Li Y, et al. V2VR: reliable hybrid-network-oriented V2V data transmission and routing considering RSUs and connectivity probability[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(6): 3533-3546. |
57 | Yadav A, Verma S. An improved firefly algorithm for routing in flying ad hoc networks[J]. International Journal of Communication Networks and Distributed Systems, 2021, 27(3): 282-298. |
58 | Arafat M, Moh S. Localization and clustering based on swarm intelligence in UAV networks for emergency communications[J]. IEEE Internet of Things Journal, 2019, 6(5): 8958-8976. |
59 | Wang M. A mobility aware clustering scheme based on swarm intelligence in FANETs[C]∥2020 IEEE/CIC International Conference on Communications in China, Chongqing, China, 2020: 747-752. |
60 | Chen B, Rho S. Autonomous tactical deployment of the UAV array using self-organizing swarm intelligence[J]. IEEE Consumer Electronics Magazine, 2020, 9(2): 52-56. |
61 | Khare V, Wang F, Wu S, et al. Ad-hoc network of unmanned aerial vehicle swarms for search & destroy tasks[C]∥2008 4th International IEEE Conference Intelligent Systems, Varna, Bulgaria, 2008: 65-72. |
62 | Berger J, Happe J, Gagné C, et al. Co-evolutionary information gathering for a cooperative unmanned aerial vehicle team[C]∥2009 12th International Conference on Information Fusion, Seattle, USA, 2009: 347-354. |
63 | Singh K, Verma A. A trust model for effective cooperation in flying ad hoc networks using genetic algorithm[C]∥2018 International Conference on Communication and Signal Processing, Chennai, India, 2018: 491-495. |
64 | Khan A, Aftab F, Zhang Z. BICSF: bio-inspired clustering scheme for FANETs[J]. IEEE Access, 2019, 7: 31446-31456. |
65 | Wu P, Xiao F, Huang H, et al. Load balance and trajectory design in multi-UAV aided large-scale wireless rechargeable networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13756-13767. |
66 | Ma Y, Xu W, Wang W, et al. Research on unmanned airborne millimeter-wave broadband obstacle avoidance radar system based on FPGA[C]∥2nd International Conference on Computer Engineering, Information Science & Application Technology, Wuhan, China, 2016: 820-823. |
67 | Li K, Han Y, Ge F, et al. Tracking a dynamic invading target by UAV in oilfield inspection via an improved bat algorithm[J]. Applied Soft Computing, 2020, 90: No. 106150. |
68 | Zhang C, Zhen Z, Wang D, et al. UAV path planning method based on ant colony optimization[C]∥2010 Chinese Control and Decision Conference, Xuzhou, China, 2010: 3790-3792. |
69 | Shao S, He C, Zhao Y, et al. Efficient trajectory planning for UAVs using hierarchical optimization[J]. IEEE Access, 2021, 9: 60668-60681. |
70 | Li K, Han Y, Yan X. Distributed multi-UAV cooperation for dynamic target tracking optimized by an SAQPSO algorithm[J]. ISA Transactions, 2022, 129: 230-242. |
71 | Yu Y, Wang H, Liu S, et al. Distributed multi-agent target tracking: a nash-combined adaptive differential evolution method for UAV systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 8122-8133. |
72 | Asim M, Mashwani W, Shah H, et al. An evolutionary trajectory planning algorithm for multi-UAV-assisted MEC system[J]. Soft Computing, 2022, 26(16): 7479-7492. |
73 | Chen J, Ye F, Jiang T. Path planning under obstacle-avoidance constraints based on ant colony optimization algorithm[C]∥2017 IEEE 17th International Conference on Communication Technology, Chengdu, China, 2017: 1434-1438. |
74 | Shao S, Shi W, Zhao Y, et al. A new method of solving UAV trajectory planning under obstacles and multi-constraint[J]. IEEE Access, 2021, 9: 161161-161180. |
75 | Liu H, Chen Q, Pan N, et al. Three-dimensional mountain complex terrain and heterogeneous multi-UAV cooperative combat mission planning[J]. IEEE Access, 2020, 8: 197407-197419. |
76 | Ghambari S, Lepagnot J, Jourdan L, et al. UAV path planning in the presence of static and dynamic obstacles[C]∥2020 IEEE Symposium Series on Computational Intelligence, Canberra, Australia, 2020: 465-472. |
77 | Nikolos I, Valavanis K, Tsourveloudis N, et al. Evolutionary algorithm based offline/online path planner for UAV navigation[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2003, 33(6): 898-912. |
78 | Besada-Portas E, Torre L, Jesus M, et al. Evolutionary trajectory planner for multiple UAVs in realistic scenarios[J]. IEEE Transactions on Robotics, 2010, 26(4): 619-634. |
79 | Fan J, Sun H, Sun X, et al. Mission planning of MAV/UAV cooperative combat based on improved genetic algorithm[C]∥2021 China Automation Congress. Beijing, China, 2021: 3264-3269. |
80 | Zhen Z, Chen Y, Wen L, et al. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment[J]. Aerospace Science and Technology, 2020, 100: No. 105826. |
81 | Wilhelm J, Rojas J, Eberhart G, et al. Heterogeneous aerial platform adaptive mission planning using genetic algorithms[J]. Unmanned Systems, 2017, 5(1): 19-30. |
82 | Zhen Z, Zhu P, Xue Y, et al. Distributed intelligent self-organized mission planning of multi-UAV for dynamic targets cooperative search-attack[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2706-2716. |
83 | Zuo J, Liu Z, Chen J, et al. A Multi-agent cluster cooperative confrontation method based on swarm intelligence optimization[C]∥2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, Nanchang, China, 2021: 668-672. |
84 | 黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447-2452. |
Huang Chang-qiang, Zhao Ke-xin, Han Bang-jie, et al. A UAV maneuver decision method based on approximate dynamic programming[J] Journal of Electronics and Information, 2018, 40(10): 2447-2452. | |
85 | 周欢, 赵辉, 韩统, 等. 基于规则的无人机集群飞行与规避协同控制[J]. 系统工程与电子技术, 2016, 38(6): 1374-1382. |
Zhou Huan, Zhao Hui, Han Tong, et al. Rule based cooperative control of UAV cluster flight and evasion[J]. Systems Engineering and Electronic Technology, 2016, 38(6): 1374-1382. | |
86 | 汪瀚洋, 陈亮, 徐海, 等. 基于MOEA/D-ARMS的无人机在线航迹规划[J]. 系统工程与电子技术, 2022, 44(11): 3505-3514. |
Wang Han-yang, Chen Liang, Xu Hai, et al. UAV online path planning based on MOEA/D-ARMS algorithm[J]. Systems Engineering and Electronic Technology, 2022, 44(11): 3505-3514. | |
87 | 张梦琳, 江沸菠, 董莉, 等. 智能无人机轨迹与任务卸载联合优化[J]. 计算机工程与应用, 2020, 56(21): 38-46. |
Zhang Meng-lin, Jiang Fei-bo, Dong Li, et al Joint optimization of trajectory and task unloading of intelligent UAV[J]. Computer Engineering and Application, 2020, 56(21): 38-46. | |
88 | 李世豪, 丁勇, 高振龙. 基于直觉模糊博弈的无人机空战机动决策[J]. 系统工程与电子技术, 2019, 41(5): 1063-1070. |
Li Shi-hao, Ding Yong, Gao Zhen-long. UAV air combat maneuver decision based on intuitionistic fuzzy game[J]. Systems Engineering and Electronic Technology, 2019, 41(5): 1063-1070. | |
89 | Xue C, Ganglin W, Zhe W. The decision making algorithm based on inverse-design method and its application in the UAV autonomous flight control system design[C]∥2010 2nd International Conference on Advanced Computer Control, Shenyang, China, 2010: 169-173. |
90 | Smith J, Nguyen T. Autonomous and cooperative robotic behavior based on fuzzy logic and genetic programming[J]. Integrated Computer-aided Engineering, 2007, 14(2): 141-159. |
91 | Choi H, Kim Y, Kim H. Genetic algorithm based decentralized task assignment for multiple unmanned aerial vehicles in dynamic environments[J]. International Journal of Aeronautical and Space Sciences, 2011, 12(2): 163-174. |
92 | Shaikh P, El-Abd M, Khanafer M, et al. A review on swarm intelligence and evolutionary algorithms for solving the traffic signal control problem[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(1): 48-63. |
93 | Alladi T, Bansal G, Chamola V, et al. Secauthuav: a novel authentication scheme for UAV-ground station and UAV-UAV communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15068-15077. |
94 | Tam G, Cheng Z, Lai Y, et al. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 19(7): 1199-1217. |
95 | Liu X, Chen M, Liu Y, et al. Artificial intelligence aided next-generation networks relying on UAVs[J]. IEEE Wireless Communications, 2020, 28(1): 120-127. |
[1] | Xian-yu QI,Wei WANG,Lin WANG,Yu-fei ZHAO,Yan-peng DONG. Semantic topological map building with object semantic grid map [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 569-575. |
[2] | Xiao-hu SHI,Jia-qi WU,Chun-guo WU,Shi CHENG,Xiao-hui WENG,Zhi-yong CHANG. Residual network based curve enhanced lane detection method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 584-592. |
[3] | Peng GUO,Wen-chao ZHAO,Kun LEI. Dual⁃resource constrained flexible job shop optimal scheduling based on an improved Jaya algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 480-487. |
[4] | Jin-Zhen Liu,Guo-Hui Gao,Hui Xiong. Multi⁃scale attention network for brain tissue segmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 576-583. |
[5] | Gui-he QIN,Jun-feng HUANG,Ming-hui SUN. Text input based on two⁃handed keyboard in virtual environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1881-1888. |
[6] | Fu-heng QU,Tian-yu DING,Yang LU,Yong YANG,Ya-ting HU. Fast image codeword search algorithm based on neighborhood similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1865-1871. |
[7] | Ren-chu GUAN,Bao-run HE,Yan-chun LIANG,Xiao-hu SHI. Particle swarm optimization algorithm based on kinship selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1842-1849. |
[8] | Tian BAI,Ming-wei XU,Si-ming LIU,Ji-an ZHANG,Zhe WANG. Dispute focus identification of pleading text based on deep neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1872-1880. |
[9] | Bin XIAN,Jie-qi LI,Xun GU. Ground effects compensation for an unmanned aerial vehicle via nonlinear disturbance observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1926-1933. |
[10] | Feng-feng ZHOU,Hai-yang ZHU. SEE: sense EEG⁃based emotion algorithm via three⁃step feature selection strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1834-1841. |
[11] | Feng-feng ZHOU,Yi-chi ZHANG. Unsupervised feature engineering algorithm BioSAE based on sparse autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1645-1656. |
[12] | Jun WANG,Yan-hui XU,Li LI. Data fusion privacy protection method with low energy consumption and integrity verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1657-1665. |
[13] | Wei ZHANG,Shu-pei ZHANG,Chong-en LUO,Sheng ZHANG,Guo-lin WANG. Collision avoidance trajectory planning for intelligent vehicles in emergency conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1515-1523. |
[14] | Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427. |
[15] | Wen-jun WANG,Yin-feng YU. Automatic completion algorithm for missing links in nowledge graph considering data sparsity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1428-1433. |
|