Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 926-937.doi: 10.13229/j.cnki.jdxbgxb.20220664

Previous Articles     Next Articles

Internal flow field in a hydrodynamic torque converter with dynamic hybrid RANS/LES model

Wan-bin YAN1,2(),Kong-hua YANG3,Kai-diao JIN3,Su-jiao CHEN1,2,Yong-hua ZHANG1,2,Chun-bao LIU3()   

  1. 1.Research Institute of Transmission,Liugong Liuzhou Transmission Parts Co. ,Ltd. ,Liuzhou 545007,China
    2.Guangxi Liugong Machinery Co. ,Ltd. ,Liuzhou 545007,China
    3.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2022-05-30 Online:2024-04-01 Published:2024-05-17
  • Contact: Chun-bao LIU E-mail:yanwb@liugong.com;liuchunbao@jlu.edu.cn

Abstract:

The traditional one-dimensional beam research method cannot describe the complex time-varying transient turbulent flow in the working cavity of a high power density torque converter. RANS, LES, DES and SBES models are efficiently coupled with fine hexahedral grids and dynamic physicochemical properties of media by setting turbulence models in CFD calculation, which provides guidance for transient simulation of hydraulic torque converter (TC) to predict its external performance and complex internal flow field distribution. The stress-blended eddy simulation (SBES) method in dynamic hybrid rans-les (DHRL) was found by qualitative and quantitative analysis of the flow structure inside the hydraulic torque converter and the sequential evolution of the quasi-ordered vortex system in the guide vane boundary layer. The boundary layer flow in the working chamber can be fully identified, and the multi-basin coupling complex flow phenomenon can be accurately captured. The maximum error of the original characteristic prediction results is less than 4% through the bench experiment. In addition, the mechanism of flow loss generation in the working chamber is also elucidated, and the flow mechanism of vortex structure generation, development, transport, fragmentation and synthesis is revealed, which provides a calculation method for the efficient development of new products and the improvement of original products.

Key words: hydraulic torque converter, scale-resolving simulation, flow field, computational fluid dynamics(CFD)

CLC Number: 

  • TH137.332

Table 1

Differences between different turbulence models"

差异类型RANSLESHRL
解析尺度平均尺度大尺度大尺度
湍流模型

涡黏及

雷诺应力

亚格子

模型

RANS/

LES

结果精度一般较高较高
网格质量一般较高一般
求解代价较小较大适中
求解类型

时均流场

结果

瞬态流场

结果

瞬态流场结果

Fig.1

Comparison of modeling thought among different turbulence models"

Fig.2

Computing domains and grids"

Table 2

Dimension parameters of impeller of torque converter"

参数泵轮涡轮导轮
入口半径 /mm117.57176.72116.82
出口半径 /mm177.51117.87116.83
入口角/(°)1083596
出口角/(°)12315020
倾斜角/(°)139.7134.2125.6
叶片数282421

Table 3

CFD model description"

模拟方法相关设置
计算类型瞬态
湍流模型

RANS,LES,

HRL(DES SBES)

压力-速度耦合SIMPLEC
动量有限中心差分
瞬态方程隐式二阶精度
泵轮转速/(r·min-12000
涡轮转速/(r·min-10~1600
导轮状态静止
密度/(kg·m-3860
黏度UDF
时间步长/s0.0005
时间步数200

Fig.3

Convergence curve"

Fig.4

Grid independence and y+foliar distribution"

Fig.5

Experimental bench"

Fig.6

Comparison of absolute errors of turbulence models"

Fig.7

Curve of characteristics and absolute error of SBES turbulence model"

Fig.8

Trend of changes in various physical quantities"

Fig.9

Wall shear stress on turbine blades"

Fig.10

Pressure coefficient and viscosity coefficient"

Fig.11

Evolution of turbine vortex structure"

1 Li Ming-xue, Yang Guo-lai, Li Xiao-qing, et al. Variable universe fuzzy control of adjustable hydraulic torque converter based on multi-population genetic algorithm[J]. IEEE Access, 2019, 7: 29236-29244.
2 You Yong, Sun Dong-ye, Qin Da-tong. Shift strategy of a new continuously variable transmission based wheel loader[J]. Mechanism and Machine Theory, 2018, 130: 313-329.
3 Liu Cheng, Wei Wei, Yan Qing-dong, et al. On the application of passive flow control for cavitation suppression in torque converter stator[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29(1): 204-222.
4 Liu Cheng, Xiang Chang-le, Yan Qing-dong, et al. Development and validation of a CFD based optimization procedure for the design of torque converter cascade[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 128-141.
5 Lei Y L, Wang C, Liu Z J, et al. Analysis of the full flow field of Torque Converter[J]. dvanced Materials Research, 2012, 468: 674-677.
6 Song K, Kim K, Park J, et al. Development of the integrated process for torque converter design and analysis[C]//SAE Paper, 2008-01-0785.
7 Odier N, Thacker A, Harnieh M, et al. A mesh adaptation strategy for complex wall-modeled turbomachinery LES[J]. Computers & Fluids, 2021, 214: No.104766.
8 Yang X I A, Sadique J, Mittal R, et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows[J]. Physics of Fluids, 2015, 27(2): 25112.
9 Jung J H, Kang S, Hur N. A numerical study of a torque converter with various methods for the accuracy improvement of performance prediction[J]. Progress in Computational Fluid Dynamics, 2011, 11(3,4): 261-268.
10 de la Fuente P, Stoff H, Volgmann W, et al. Numerical analysis into the effects of the unsteady flow in an automotive hydrodynamic torque converter[C]∥The International Conference of Mechanical Engineering, London,UK, 2011:6-8.
11 Shin S, Chang H, Athavale M. Numerical investigation of the pump flow in an automotive torque converter[J]. SAE Transactions, 1999(1): 1969-1977.
12 Fernando D, Gao S, Garrett S J. The effect of surface roughness on rotor-stator cavity flows[J]. Physics of Fluids, 2018, 30(6): No.64103.
13 Lee C, Jang W, Lee J M, et al. Three dimensional flow field simulation to estimate performance of a torque converter[C]∥SAE 2000 World Congress, Detroit,USA,2001.
14 Wu Guang-qiang, Yan Peng. System for torque converter design and analysis based on CAD/CFD integrated platform[J]. Chinese Journal of Mechanical Engineering, 2008, 21(4): 35-39.
15 Umavathi J C. Free convective flow in a vertical rectangular duct filled with porous matrix for viscosity and conductivity variable properties[J]. International Journal of Heat and Mass Transfer, 2015, 81: 383-403.
16 Umavathi J C, Ojjela O. Effect of variable viscosity on free convection in a vertical rectangular duct[J]. International Journal of Heat and Mass Transfer, 2015, 84: 1-15.
17 Syawitri T P, Yao Y, Yao J, et al. Assessment of stress-blended eddy simulation model for accurate performance prediction of vertical axis wind turbine[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2021, 31(2): 655-673.
18 Rezaeiha A, Montazeri H, Blocken B. CFD analysis of dynamic stall on vertical axis wind turbines using Scale-Adaptive Simulation (SAS): comparison against URANS and hybrid RANS/LES[J]. Energy Conversion and Management, 2019, 196: 1282-1298.
19 Dorogi D, Baranyi L. Identification of upper branch for vortex-induced vibration of a circular cylinder at Re=300[J]. Journal of Fluids and Structures, 2020, 98:No.103135.
20 Liu Chun-bao, Ma Wen-xin, Zhu Xi-lin. 3D transient calculation of internal flow field for hydrodynamic torque converter[J]. Journal of Mechanical Engineering, 2010, 46(14): 161-166.
21 Tabor G R, Baba-Ahmadi M H. Inlet conditions for large eddy simulation: a review[J]. Computers & Fluids, 2010, 39(4): 553-567.
22 Liu Chun-bao, Li Jing, Bu Wei-yang, et al. Application of scale-resolving simulation to a hydraulic coupling, a hydraulic retarder, and a hydraulic torque converter[J]. Journal of Zhejiang University(Science A), 2018, 19(12): 904-925.
23 Gritskevich M S, Garbaruk A V, Schuetze J, et al. Development of DDES and IDDES formulations for the k-omega shear stress transport model[J]. Flow Turbulence and Combustion, 2012, 88(3): 431-449.
24 Chen Jie, Wu Guang-qiang. Kriging-assisted design optimization of the impeller geometry for an automotive torque converter[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2503-2514.
25 Smagorinsky J. General circulation experiments with the primitive equations: I. the basic experiment[J]. Monthly Weather Review, 1963, 91(3): 99-164.
26 Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200.
27 Liu Chun-bao, Li Jing, Bu Wei-yang, et al. Large eddy simulation for improvement of performance estimation and turbulent flow analysis in a hydrodynamic torque converter[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1): 635-651.
28 Liu Chun-bao, Yang Kong-hua, Li Jing, et al. Performance improvement and flow field investigation in hydraulic torque converter based on a new design of segmented blades[J]. Journal of Automobile Engineering, 2020, 234(8): 2162-2675.
29 Su Wen-tao, Li Feng-chen, Li Xiao-bin, et al. Assessment of LES performance in simulating complex 3D flows in turbo-machines[J]. Engineering Applications of Computational Fluid Mechanics, 2012, 6(3): 356-365.
30 Hunt J C, Wray A A, Eddies Moin P., streams, and convergence zones in turbulent flows[C]∥Proceedings of the 1988 Summer Program on Studying Turbulence Using Numerical Simulation Databases, 1988:193-208.
[1] Gui-sheng CHEN,Guo-yan LUO,Liang-xue LI,Zhen HUANG,Yi LI. Analysis of diesel particulate filter channel flow field and its noise characteristics in plateau environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1892-1901.
[2] Yan-bo LI,Yu ZHANG,Wei-yu LIU,Qi-sheng WU,Biao WANG,Bo-bin YAO. Bipolar DC flow field⁃effect⁃transistor and its application in microfluidics [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1934-1942.
[3] Wei WEI,Xu LIU,Xue-yong HAN,Qing-dong YAN. Flow field reconstruction accuracy influence of proper orthogonal decomposition basis functions in hydrodynamic retarderunder full⁃filled operating condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1959-1968.
[4] Xin CHEN,Xin-jian RUAN,Ming LI,Ning WANG,Jia-ning WANG,Kai-xuan PAN. Application of modified discrete scheme based onlarge eddy simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1756-1763.
[5] Xiu-quan LU,Chun-yu HU,Ya-long CHAI,Wen-xing MA,Jian-nan ZHANG. Analysis of transient flow field characteristics of large-scale hydrodynamic coupling under speed regulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1539-1546.
[6] SUN Zheng, HUANG Yu-qi, YU Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication [J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[7] SHAO Qing, XU Tao, XU Cong-zhan, GUO Hao-tian, GUO Gui-kai, ZHANG Hai-bo. Simulation of angular contact ball bearing characteristics with PEEK cage [J]. 吉林大学学报(工学版), 2017, 47(1): 163-168.
[8] YUAN Zhe, ZHOU Qian-qian, LIU Chun-bao, MA Wen-xing, XU Zhi-xuan. Blade design and aerodynamics of MW wind turbine based on BEM theory [J]. 吉林大学学报(工学版), 2016, 46(4): 1142-1148.
[9] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck [J]. 吉林大学学报(工学版), 2013, 43(03): 595-601.
[10] YAN Qing-dong, ZOU Bo, WEI Wei. Numerical investigation of brake performance of hydrodynamic tractor-retarder assembly [J]. 吉林大学学报(工学版), 2012, 42(01): 91-97.
[11] ZHANG Ying-chao, WEI Gan, ZHANG Zhe. Aerodynamic numerical simulation of hatch-back car |with different spoilers [J]. 吉林大学学报(工学版), 2011, 41(01): 1-0005.
[12] ZHANG Ying-Chao, ZHANG Zhe, LI Jie. Virtual wind tunnel test based computational fluid dynamics [J]. 吉林大学学报(工学版), 2010, 40(增刊): 90-0094.
[13] LIN Xue-Dong, TIAN Wei, HUANG Ya, LI De-Gang, LIU Zhong-Chang. Multidimensional numerical study on mixture formation in reentrant combustion chamber of highpressure commonrail directinjection diesel engine [J]. 吉林大学学报(工学版), 2010, 40(02): 363-0369.
[14] LIU Chun-Bao, MA Wen-Xing, XU Rui. Calculation and analysis of axial force in hydrodynamic torque converter based on CFD [J]. 吉林大学学报(工学版), 2009, 39(05): 1181-1185.
[15] Gao Yin-han,Chen Wang-feng,Cheng Peng,Li Zhen-lei,Chi Juncheng,Li Qiang3 . Twophase three dimension flow field simulation in a cyclone separator [J]. 吉林大学学报(工学版), 2008, 38(增刊): 85-0089.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!