Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1221-1226.doi: 10.13229/j.cnki.jdxbgxb.20221578

Previous Articles    

Fault detection algorithm for indicator diagram of automobile shock absorber based on dynamic analysis

Liang-liang GUAN(),Guo-hong TIAN   

  1. Department of Automobile and Traffic Engineering,Liaoning University of Technology,Jinzhou 121001,China
  • Received:2022-12-09 Online:2024-05-01 Published:2024-06-11

Abstract:

To alleviate the radial power deviation caused by flow inertia in automotive shock absorbers, a fault detection algorithm based on dynamic analysis of automotive shock absorber indicator diagram is proposed. Calculate the flow inertia of the shock absorber fluid in the left and right enclosed areas, substitute the radial force in the compression stroke and the radial force in the rebound stroke into the energy and momentum equations, establish the dynamic equation of the car shock absorber, draw the measured indicator diagram, and input it as a sample into the support vector machine for classification. Set the judgment threshold for threshold judgment, and complete the fault detection of the indicator diagram. The experimental results show that the proposed method's fault detection accuracy is good, as the indicator diagram of the automotive shock absorber obtained during insufficient liquid supply, double valve leakage, piston jamming, and sand resistance is basically consistent with the measured indicator diagram.

Key words: dynamic analysis, automobile shock absorber, connecting rod, indicator diagram, support vector machine

CLC Number: 

  • TH165

Fig.1

Topological structure of automobile shock absorber"

Fig.2

Ideal indicator diagram and measured indicator diagram"

Fig.3

Test object"

Table 1

Technical parameters of test object"

技术参数参数值
前交叉管外径dfo/m0.070
前交叉管内径dfi/m0.054
活塞杆外径dso/m0.062
活塞杆内径dsi/m0.067
活塞杆长度Ify/m0.147
阻尼孔直径df/m0.0083
导流孔直径dy/m0.002
空气柱初高hair/m0.600
空气柱预压高度hpre/m0.038
减震液密度ρ/(m3·s-11100
动力黏度μ/(N·s·m-20.5
油膜长度hr/m0.319
油膜厚度δ/m3×10-5
流量系数ε0.84
多变指数n2.34
大气压力P0/(N·m-21.702×106
径向压流pn/(N·m-22100
加振频率f/Hz4.088

Fig.4

Comparison of different methods"

Fig.5

Comparison of different methods"

Fig.6

Comparison of different methods"

Fig.7

Comparison of different methods"

1 沈国栋, 何芝仙, 时培成. 地震荷载作用下新型耗能减震器减震性能分析[J]. 振动与冲击, 2021, 40(21): 251-257.
Shen Guo-dong, He Zhi-xian, Shi Pei-cheng. Performance analysis of new energy-dissipation shock absorber under earthquake load[J]. Journal of Vibration and Shock, 2021, 40 (21): 251-257.
2 吕孝孝, 王旱祥, 刘延鑫, 等. 故障工况下有杆泵采油系统运行特性及示功图研究[J]. 中国石油大学学报: 自然科学版, 2020, 44(2): 117-126.
Xiao-xiao Lyu, Wang Han-xiang, Liu Yan-xin, et al. Study on operating performance and indicator diagram of rod pump production system under fault conditions [J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44 (2): 117-126.
3 刘志远, 徐腾养, 杜召彬, 等. 高速动车组动力学性能与一系垂向减振器故障关系研究[J]. 中国工程机械学报, 2021, 19(5): 466-470.
Liu Zhi-yuan, Xu Teng-yang, Du Zhao-bin, et al. Study on relationship between dynamic performance of high-speed vehicle and performance of yaw damper [J]. Chinese Journal of Construction Machinery, 2021, 19(5): 466-470.
4 毕宇. 海上风电单桩施工液压锤减震环故障分析及改进措施[J]. 船舶工程, 2021, 43(): 87-89.
Bi Yu. Fault analysis and improvement measures of hydraulic hammer damping ring of offshore wind power single pile construction[J]. Ship Engineering, 2021, 43 (Sup.1): 87-89.
5 邓飞跃, 吕浩洋, 顾晓辉, 等. 基于轻量化神经网络Shuffle-SENet的高速动车组轴箱轴承故障诊断方法[J]. 吉林大学学报: 工学版, 2022, 52(2): 474-482.
Deng Fei-yue, Hao-yang Lyu, Gu Xiao-hui, et al. Fault diagnosis of high-speed train axle bearing based on a lightweight neural network Shuffle-SENet[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 474-482.
6 李炜, 周丙相, 蒋栋年, 等. 基于多状态时间序列预测学习的电源车故障预测方法[J]. 吉林大学学报: 工学版, 2020, 50(4): 1532-1544.
Li Wei, Zhou Bing-xiang, Jiang Dong-nian, et al. Fault prediction of power supply vehicle based on multi-state time series prediction learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1532-1544.
7 陈侃, 郭逸, 刘伟, 等. 基于相态图像在线检测的RCP轴封内流场试验研究[J]. 排灌机械工程学报, 2022, 40(1): 68-73.
Chen Kan, Guo Yi, Liu Wei, et al. Experimental study on inner flow field of RCP shaft seal based on phase image edge online detection[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(1): 68-73.
8 张敏, 邵海浪. 巨震作用下摩擦阻尼耗能框架结构抗倒塌分析[J]. 应用力学学报, 2021, 38(3): 1245-1251.
Zhang Min, Shao Hai-lang. Analysis of collapse-resistance capacity of frame structure with frictional dampers dissipating energy subjected to mega earthquake[J]. Chinese Journal of Applied Mechanics, 2021, 38 (3): 1245-1251.
9 田增国, 田东哲, 姜宝柱, 等. 基于主成分分析方法的示功图故障诊断系统[J]. 内燃机与配件, 2019(24): 149-151.
Tian Zeng-guo, Tian Dong-zhe, Jiang Bao-zhu, et al. Indicator diagram fault diagnosis system based on principal component analysis[J]. Internal Combustion Engine & Parts, 2019(24): 149-151.
10 季文超, 郭士茹, 赵晶, 等. 汽车底盘减震器衬套件质量检测方法仿真[J]. 计算机仿真, 2021, 38(8): 167-171.
Ji Wen-chao, Guo Shi-ru, Zhao Jing, et al. Simulation of quality inspection method for automobile chassis shock absorber liner[J]. Computer Simulation, 2021, 38(8): 167-171.
[1] Hai-long GAO,Yi-bo XU,Kun LIU,Chun-yang LI,Xiao-yu LU. High-speed highway road network short-term traffic flow parameters based on multi-source data fusion prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 155-161.
[2] En-shen LONG,Guang-ze BAN. Idle noise diagnosis algorithm of air-conditioning refrigeration compressor based on wavelet packet extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1929-1934.
[3] Ye TIAN,Nan-nan LI,Jun-wei LIU,Sheng-yuan JIANG,Chu WANG,Wei-wei ZHANG. Identification of critical fragments cutting load of simulated lunar soil based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2143-2151.
[4] Yan LI,Jiu-peng ZHANG,Zi-xuan CHEN,Guo-jing HUANG,Pei WANG. Evaluation of asphalt pavement performance based on PCA⁃PSO⁃SVM [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1729-1735.
[5] Jian WU,Bin XU. Displacement interval prediction model and simulation of accumulation landslide based on ceemdan theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 562-568.
[6] Shi-jun SONG,Min FAN. Detection method of abnormal data in cube based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2917-2922.
[7] Shi-jie GUO,Xue-wei ZHANG,Nan ZHANG,Guan QIAO,Shu-feng TANG. Thermal key point select and error prediction under typical speed of machine tool spindle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 72-81.
[8] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[9] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
[10] Chun-ping HOU,Chun-yue ZHAO,Zhi-peng WANG,Hai-rui TIAN. Video anomaly detection algorithm based on effective anomaly sample construction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1823-1829.
[11] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
[12] Kang WANG,Meng YAO,Li-ben LI,Jian-qiao LI,Xiang-jin DENG,Meng ZOU,Long XUE. Mechanical performance identification for lunar soil in lunar surface sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1146-1152.
[13] Xiong-fei LI,Jing WANG,Xiao-li ZHANG,Tie-hu FAN. Multi-focus image fusion based on support vector machines and window gradient [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 227-236.
[14] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[15] Zhou SHI,Shu-qing KOU. Performance analysis and lightweight design of 36MnVS4 fracturesplitting connecting rod [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1992-2001.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!