Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1521-1530.doi: 10.13229/j.cnki.jdxbgxb20180356

Previous Articles    

Numerical simulation of influence factors of splitting strength of asphalt mixtures

Yong PENG1(),Hua GAO1,Lei WAN1,Gui-ying LIU2   

  1. 1. Institute of Transportation Engineering, Zhejiang University, Hangzhou 310058, China
    2. China Railway Eryuan Engineering Group (Chongqing) Survey, Design and Research Co. Ltd. , Chongqing 400023, China
  • Received:2018-04-17 Online:2019-09-01 Published:2019-09-11

Abstract:

This paper investigates the influence factors of the splitting strength of asphalt mixtures by means of numerical simulation. A micromechanical model for the splitting test of asphalt mixtures was established based on the three-dimensional (3D) Discrete Element Method (DEM) and the Cohesive Zone Model (CZM), and the splitting strength of asphalt mixtures with different aggregate gradations at different temperatures was simulated. Simulation results were verified by laboratory splitting tests. Results show that the splitting strength of asphalt mixtures can be simulated well using a micromechanical model based on CZM and 3D DEM. The aggregate gradation and temperature significantly affect the splitting strength of asphalt mixtures. At the same temperature, the splitting strength of asphalt mixtures increases with the nominal maximum aggregate size or when aggregate gradation becomes coarse. With the same nominal maximum aggregate size, the splitting strength of asphalt mixtures decreases with the increase in temperature.

Key words: road engineering, asphalt mixture, splitting strength, influence factor, cohesive zone model, discrete element method

CLC Number: 

  • U414

Table 1

Aggregate gradations"

级配方孔筛/m
31.526.519.016.013.29.54.752.361.180.60.30.150.075
AC131009570483624181284
AC1610097.582.56852.54129.52216116
AC2010097.582.571624837272115106

Table 2

Material parameters of asphalt mixture virtual model"

工况相体材料参数
级配温度/℃抗拉强度/MPa刚度/(GN·m-1)粘结强度/N
法向切向法向切向
AC13-10集料17.206.000.5011.9711.97
胶浆13.800.300.304.804.80
接触8.280.300.304.324.32
20集料17.206.000.5011.9711.97
胶浆4.900.300.303.733.73
接触4.400.300.303.353.35
35集料17.206.000.5011.9711.97
胶浆0.880.100.100.610.61
接触0.790.100.100.550.55
AC16-10集料17.206.000.5011.9711.97
胶浆9.300.300.303.243.24
接触5.580.300.302.912.91
20集料17.206.000.5.11.9711.97
胶浆4.410.300.302.962.96
接触3.960.300.302.672.67
35集料17.206.000.5011.9711.97
胶浆1.650.100.100.410.41
接触1.480.100.100.370.37
AC20-10集料17.206.000.5011.9711.97
胶浆9.990.300.303.483.48
接触4.490.300.303.143.14
20集料17.206.000.5011.9711.97
胶浆4.700.300.303.383.38
接触4.230.300.303.043.04
35集料17.206.000.5011.9711.97
胶浆1.500.100.100.340.34
接触1.350.100.100.310.31

Fig. 1

Discrete element model for splitting test for asphalt mixtures"

Fig.2

Force-displacement curves in virtual splitting test"

Table 3

Strengths in virtual splitting test"

温度/℃级配试件编号旋转角度/(°)平均值总平均值
0306090120150
-10AC131#3.123.253.173.273.223.223.213.35
2#3.333.453.593.513.593.483.49
AC161#3.353.513.493.463.593.513.493.42
2#3.253.293.473.433.343.313.35
AC201#3.163.683.833.803.573.783.643.63
2#3.563.573.823.563.773.403.61
20AC131#1.271.231.311.361.411.421.331.37
2#1.361.271.321.371.501.571.40
AC161#1.271.271.281.251.391.311.301.43
2#1.331.441.631.701.631.571.55
AC201#1.361.521.641.681.651.481.561.55
2#1.531.611.661.451.631.361.54
35AC131#0.580.570.610.630.620.660.610.59
2#0.500.590.590.610.600.630.58
AC161#0.550.580.590.600.690.650.610.64
2#0.620.650.700.710.690.670.67
AC201#0.770.780.900.940.930.830.860.83
2#0.800.770.880.780.810.730.80

Fig.3

Force-displacement curves in laboratory splitting test"

Table 4

Strengths in laboratory splitting test"

温度/℃级配室内试验结果 /MPa平均值/MPa标准差/MPa变异系数
1#2#3#4#
-10AC133.243.343.063.203.210.120.036
AC163.463.323.63.473.460.110.033
AC203.543.723.63.573.610.080.022
20AC131.251.361.341.381.330.060.043
AC161.371.451.331.411.390.050.037
AC201.541.721.691.641.650.080.048
35AC130.520.550.60.560.560.030.059
AC160.63-0.620.630.630.0060.010
AC200.770.810.760.730.770.030.043
1 RotherburgL, BogoboweczA, HaasR, et al. Micromechanical modeling of asphalt concrete in connection with pavement rutting problems[C]∥7th International Conference on Asphalt Pavements, Nottingham, United Kingdom, 1992.
2 ButtlarW G, YouZ. Discrete element modeling of asphalt concrete: microfabric approach[J]. Transportation Research Record Journal of the Transportation Research Board, 2001, 1757(1): 111-118.
3 AbbasA, MasadE A, PapagiannakisT, et al. Modelling asphalt mastic stiffness using discrete element analysis and micromechanics-based models[J]. International Journal of Pavement Engineering, 2005, 6(2): 137-146.
4 CollopA C, McdowellG R, LeeY W. Modelling dilation in an idealised asphalt mixture using discrete element modelling[J]. Granular Matter, 2006, 8(3): 175-184.
5 KimH, WagonerM P, ButtlarW G. Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model[J]. Journal of Materials in Civil Engineering, 2008, 20(8): 552-563.
6 YouZ, AdhikariS, DaiQ. Three-dimensional discrete element models for asphalt mixtures[J]. Journal of Engineering Mechanics, 2008, 134(12): 1053-1063.
7 YouZ, LiuY, DaiQ. Three-dimensional microstructural-based discrete element viscoelastic modeling of creep compliance tests for asphalt mixtures[J]. Journal of Materials in Civil Engineering, 2011, 23(1): 79-87.
8 LiuY, YouZ. Visualization and simulation of asphalt concrete with randomly generated three-dimensional models[J]. Journal of Computing in Civil Engineering, 2009, 23(6): 340-347.
9 YuH, ShenS. Impact of aggregate packing on dynamic modulus of hot mix asphalt mixtures using three-dimensional discrete element method[J]. Construction & Building Materials, 2012, 26(1): 302-309.
10 PengY, HarveyJ T, SunL J. Three-dimensional discrete-element modeling of aggregate homogeneity influence on indirect tensile strength of asphalt mixtures[J/OL]. [2017-08-04].
11 杨宇亮. 沥青混合料细观结构的分析系统[D]. 上海: 同济大学交通运输工程学院, 2003.
YangYu-liang. Sub-microstructure analysis system of asphalt concrete[D]. Shanghai: School of Transportation Engineering, Tongji University, 2003.
12 张金喜, 张建华, 王德志. 关于低品质粗集料抗冻性能研究[J]. 混凝土, 2005(8): 11-15.
ZhangJin-xi, ZhangJian-hua, WangDe-zhi. Frost resistance of the low quality coarse-aggregate[J]. Concrete, 2005(8): 11-15.
13 刘贵应, 戴俊巍, 刘勇, 等. 集料均匀性对沥青混合料低温劈裂强度影响数值研究[J]. 低温建筑技术, 2018, 40(11): 12-16.
LiuGui-ying, DaiJun-wei, LiuYong, et al. Numerical simulation of aggregate uniformity influence on low temperature splitting strength of asphalt mixtures[J]. Low Temperature Architecture Technology, 2018, 40(11): 12-16.
14 PengY, WanL, SunL J. Three-dimensional discrete element modelling of influence factors of indirect tensile strength of asphalt mixtures[J]. International Journal of Pavement Engineering, 2019, 20(6): 724-733.
[1] Tian⁃lai YU,Hai⁃sheng LI,Wei HUANG,Si⁃jia WANG. Shear strengthening of reinforced concrete beam with prestressed steel wire ropes [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1134-1143.
[2] Xiao⁃zhen LI,Jun⁃zhe LIU,Yan⁃hua DAI,Zhi⁃min HE,Ming⁃fang BA,Yu⁃shun LI. Effect of carbonation on nitrite ion distribution in cement paste [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1162-1168.
[3] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[4] Jing WANG,Xiang LYU,Xiao⁃long QU,Chun⁃ling ZHONG,Yun⁃long ZHANG. Analysis of relationship between subgrade soil shear strength and chemical and minerals component [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
[5] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[6] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[7] WANG Yang, WANG Xiao-mei, CHEN Ze-ren, YU Jian-qun. Modeling method of maize kernels based on discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1537-1547.
[8] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[9] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[10] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[11] WANG Yang, LYU Feng-yan, XU Tian-yue, YU Jian-qun. Shape and size analysis of soybean kernel and modeling [J]. 吉林大学学报(工学版), 2018, 48(2): 507-517.
[12] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[13] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[14] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[15] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!