Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2733-2740.doi: 10.13229/j.cnki.jdxbgxb.20221407

Previous Articles    

Thrust rod ball hinge bionic surface improvement and finite element analysis

Hua-min LIU(),Shu-han YANG,Yi LI,Ce LIANG,Qi-gang Han()   

  1. College of Materials Science and Engineering,Jilin University,Changchun 130022,China
  • Received:2022-11-07 Online:2024-09-01 Published:2024-10-29
  • Contact: Qi-gang Han E-mail:liuhm@jlu.edu.cn;hanqg@jlu.edu.cn

Abstract:

The bionic friction-increasing principle of locust foot pad was mainly applied to the rubber surface of the ball hinge of the thrust rod in commercial vehicles, and the bionic spherical crown-like flexible projections are constructed on the rubber ball hinge surface to increase the stiffness of the ball hinge. The height, radius and spacing of the bionic flexible projection were varied, and the radial stiffness, deflection stiffness and torsional stiffness of the thrust rod ball hinge were investigated by finite element analysis using Abaqus software. The results show that the optimum results are obtained for a projection height of 1 mm, radius of 4 mm and spacing of 10 mm. Finally, the optimal solution is analyzed comprehensively, and the feasibility of the solution is verified by simulation and experiment.

Key words: thrust rod ball hinge, bionic surface optimization, locust foot pad, finite element analysis

CLC Number: 

  • TG356

Fig.1

Schematic diagram of the position of the ball hinge of the thrust rod"

Fig.2

Comparison of the experimental curve and the fitted curve"

Table 1

Parameter settings for the 3N-Ogden model"

本构方程μnαnDn

Ogden

N=3

μ1=1.202α1=0.551D1=1.834
μ2=1.680e-03α2=11.334D2=1.066
μ3=1.180e-03α3=-13.469D3=-1.002

Fig.3

Locust foot pads"

Fig.4

Comparison of assembly of original rubber body mesh and rubber body mesh with bionic surface"

Fig.5

Schematic diagram of bionic flexible bump parameters"

Table 2

Values of variables a,b,c"

编号凸起高度a/mm凸起半径b/mm凸起间距c/mm
11110
21210
31310
41410
52410
63410
74410
8148
91412
101414

Fig.6

Comparison of static stiffness between original model and model 1~10"

Fig.7

Stress clouds of the original model and model 4 under deflection conditions"

Fig.8

Comparison of the original model and models 1~4 at 5 Hz"

Fig.9

Radial dynamic stiffness curves for the original model and models 1~4 at 5~20 Hz"

Fig.10

Comparison of radial hysteresis loops,torsional hysteresis loops and deflection hysteresisloops for models 4, 8~10 at 5 Hz"

Fig.11

Radial dynamic stiffness curves for models 4, 8-10 at 5-20 Hz,torsional dynamic stiffness curves and deflection stiffness curves"

Table 3

Variation of dynamic stiffness"

编号5 Hz10 Hz15 Hz20 Hz
径向扭转偏转径向扭转偏转径向扭转偏转径向扭转偏转
123.3514.3531.5535.4313.8316.6435.0212.044.8434.619.234.10
221.3227.2736.7230.1022.9220.5436.4118.928.9035.4714.888.82
318.7836.2240.4633.0130.4323.3937.3326.7814.4038.8923.0712.05
427.4151.7057.7538.3545.5937.4838.7143.2424.4844.4437.4922.74
825.8950.1457.0439.8147.0437.3343.3242.3824.3544.0237.6121.49
927.4451.2757.2237.8647.6936.7343.7842.6323.8244.4437.1822.11
1025.3852.2757.9340.2946.3837.1838.2543.4924.2142.3137.0221.86

Fig.12

Test stand and thrust rod ball hinge"

Fig.13

Comparison of simulated and experimental results of dynamic stiffness of thrust rod ball hinge"

1 Feng G Y, Shi W K, Zhang H, et al. Research on the fatigue life prediction method of thrust rod[J]. Mathematical Problems in Engineering, 2016, 2016:No. 1254037.
2 Feng G Y, Shi W K, Wang Q, et al. Finite element analysis of static characteristic of rubber spherical joint for commercial vehicle thrust rod[J]. Advanced Materials Research, 2013, 710: 273-276.
3 冯国雨. 商用车推力杆性能优化与疲劳寿命预测研究[D]. 长春:吉林大学汽车工程学院, 2016.
Feng Guo-yu. Performance optimization and fatigue life prediction of commercial vehicle thrust rod [D]. Changchun:College of Automotive Engineering, Jilin University, 2016.
4 王倩. 重型商用车推力杆结构优化与耐久性研究[D]. 长春:吉林大学汽车工程学院, 2013.
Wang Qian. Structure optimization and durability research of heavy commercial vehicle thrust rod[D]. Changchun:College of Automotive Engineering, Jilin University, 2013.
5 Li Z, Shi W K, Wang Q, et al. Force and simulation analysis of thrust rod on heavy commercial vehicle balanced suspension[J]. Applied Mechanics and Materials, 2013, 387: 94-99.
6 李赞. 商用车推力杆结构改进与性能研究[D]. 长春:吉林大学汽车工程学院, 2015.
Li Zan. Structure improvement and performance study of thrust rod on ccmmercial vehicle[D] Changchun:College of Automotive Engineering, Jilin University, 2015.
7 李磊. 重型商用车推力杆橡胶球铰的设计与寿命研究[D]. 长春:吉林大学汽车工程学院, 2017.
Li Lei. Structure design and fatigue life study of rubber bushing for commercial vehicle thrust rod [D]. Changchun:College of Automotive Engineering,Jilin University, 2017.
8 史文库,刘国政, 陈志勇. 橡胶的可压缩性在推力杆球铰有限元分析中的应用[J]. 西安交通大学学报, 2017, 51(9): 63-68, 76.
Shi Wen-ku, Liu Guo-zheng, Chen Zhi-yong. Application of rubber compressibility to finite element analysis for thrust rod[J]. Journal of Xi'an Jiaotong University, 2017, 51(9): 63-68, 76.
9 刘巧斌,史文库,高承明,等. 采用灰色Savitzky-Golay滤波的商用车推力杆橡胶球铰非对称迟滞建模[J]. 西安交通大学学报, 2019, 53(5): 82-91, 99.
Liu Qiao-bin, Shi Wen-ku, Gao Cheng-ming, et al. Asymmetrical hysteresis modelling basedd on Savitzky-Golay filter for rubber hinge on thrust rod of commercial vehicle[J]. Journal of Xi'an Jiaotong University, 2019, 53(5): 82-91, 99.
10 柯俊,祖洪飞, 史文库. 基于有限元法及遗传算法的推力杆球铰多目标优化方法[J]. 汽车工程, 2020, 42(2): 178-183.
Ke Jun, Zu Hong-fei, Shi Wen-ku. A multi-objective optimization method for the spherical hinge of a thrust rod based on the finite elemnet method and genetic algorithm [J]. Automotive Engineering, 2020, 42(2):178-183.
11 杨银辉, 晁鹏翔, 申国伟,等. 重卡推力杆载荷分析及结构优化[J]. 汽车实用技术,2018(19): 39-41.
Yang Yin-hui, Chao Peng-xiang, Shen Guo-wei,et al. Load analysis and structure optimization for truck thrust rod[J]. Automobile Applied Technology, 2018 (19):39-41.
12 翁明武, 刘飞, 李杨欢, 等. 自卸车推力杆的失效改进[J]. 汽车实用技术, 2018(18): 79-81.
Weng Ming-wu, Liu Fei, Li Yang-huan,et al. Dump truck thrust bar failure improvement [J]. Automobile Applied Technology, 2018 (18):79-81.
13 卜继玲, 周炜, 李建林, 等. 带橡胶球铰的车用推力杆稳定性分析[J]. 湘潭大学自然科学学报, 2016, 38(1): 39-41, 46.
Bu Ji-ling, Zhou Wei, Li Jian-lin, et al. Stability analysis of vehicle torque rod based on the rubber[J]. Natural Science Journal of Xiangtan University, 2016, 38(1): 39-41, 46.
14 曹洲, 王印, 梁津,等. 商用车V型推力杆失效分析[J]. 汽车实用技术. 2021, 46(14): 69-72.
Cao Zhou, Wang Yin, Liang Jin, et al. Failure analysis of V-type thrust bar of commercial vehicle[J]. Automobile Applied Techonlogy, 2021, 46(14):69-72.
15 潘博. 重卡用推力杆挡圈脱落机理分析及其结构优化设计[D]. 北京: 清华大学车辆与运载学院, 2017.
Pan Bo. Failure analysis of the thrust rod retaining ring for heavy duty truck and the structural optimization design [D]. Beijing:School of Vehicle and Mobility,Tsinghua University, 2017.
16 张俊荣, 张排排, 唐春红,等. 轻量化铝合金推力杆结构设计及其性能研究[J]. 汽车工艺与材料, 2021(8): 13-17.
Zhang Jun-rong, Zhang Pai-pai, Tang Chun-hong,et al. Structural design and performance research on lightweight aluminum alloy thrust rod[J]. Automobile Technology& Material, 2021(8):13-17.
17 张子尧. 基于Kriging模型的球铰芯轴预成形多目标优化[D]. 镇江:江苏大学材料科学与工程学院, 2016.
Zhang Zi-yao. Multi-target preform optimization for spherical hinge mandrel based on Kriging model methodology [D]. Zhenjiang:School of Materials Science & Engineering,Jiangsu University, 2016.
18 刘峰. 基于有限元分析的推力杆球铰硫化模具设计[D]. 长沙:湖南大学机械与运载工程学院, 2016.
Liu Feng. Design of vulcanization mould of torque rod bushing based on FEA[D]. Changsha:College of Mechanical and Vehicle Engineering, Hunan University, 2016.
19 van Den Boogaart L M, Langowski J K A, Amador G J. Studying stickiness: methods, trade-offs, and perspectives in measuring reversible biological adhesion and friction [J]. Biomimetics, 2022, 7(3): 1-19.
20 Wang L X, Zhou Q, Xu S Y, et al. Investigation of the sliding friction behaviors of locust on slippery plates[J]. Chinese Science Bulletin, 2009, 54(24): 4549-4554.
21 Dai Z D, Stanislav G. Contact mechanics of pad of grasshopper (Insecta: Orthoptera) by finite element methods[J]. Chinese Science Bulletin, 2009, 54(4): 549-555.
22 Woodward M A, Sitti M. Morphological intelligence counters foot slipping in the desert locust and dynamic robots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): E8358-E8367.
[1] Zhi-jun YANG,Chi ZHANG,Guan-xin HUANG. Mechanical model of rigid⁃flexible coupling positioning stage based on floating coordinate method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 385-393.
[2] Yang XIAO,Jie WANG,Meng-jun LIU,Fa-qing YANG,Tian-yao ZHANG,Wei LAN. Improved mechanical model of gas diffusion layer in proton exchange membrane fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2147-2155.
[3] Jian-lin ZUO,En-bo LIU,Zheng-bin JIA,Sheng-hao XU,Jian-lin XIAO. Finite element analysis of bionic prosthesis based on design of medial meniscus structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2319-2324.
[4] Ya-feng GONG,Jia-xiang SONG,Hai-peng BI,Guo-jin TAN,Guo-hai HU,Si-yuan LIN. Static test and finite element analysis of scale model of fabricated box culvert [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1728-1738.
[5] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
[6] LIU Guo-zheng, SHI Wen-ku, Chen Zhi-yong. Finite element analysis of transmission error for hypoid gears considering installation error [J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[7] CHEN Dong-hui, LIU Wei, LYU Jian-hua, CHANG Zhi-yong, WU Ting, MU Hai-feng. Bionic design of corn stubble collector based on surface structure of Patinopecten yessoensis [J]. 吉林大学学报(工学版), 2017, 47(4): 1185-1193.
[8] ZHANG Yan-ling, SUN Tong, HOU Zhong-ming, LI Yun-sheng. Bending-torsion characteristics of steel-concrete curved composite beams stiffened with diaphragms [J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[9] WU Yue, YANG Zhi-gang, CHEN Long, KANG Xiao-tao, ZHANG Dong-wei. Simulation and experiment of piezoelectric cantilever generator with multi-modal [J]. 吉林大学学报(工学版), 2015, 45(4): 1162-1167.
[10] YU Zhen-huan,ZHANG Na,LIU Shun-an. Simulation analysis of dynamic nonlinear characteristics of vehicle shock absorber based on fluid-structure interaction [J]. 吉林大学学报(工学版), 2015, 45(1): 16-21.
[11] LI Cheng, ZHU Hong-hong, TIE Ying, HE Long. Stress distribution and load sharing in single-lap bonded/bolted joints [J]. 吉林大学学报(工学版), 2013, 43(04): 933-938.
[12] CHEN Zhi-yong, SHI Wen-ku, WANG Qing-guo, TENG Teng. Structure parameter of light vehicle cab's hydraulic mount based on fluid-structure interaction finite element analysis [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 98-103.
[13] GUO Kong-hui,QIU En-chaoGUO . Finite element analysis of tire rolling contact based on ring supported on elastic foundation model [J]. 吉林大学学报(工学版), 2011, 41(03): 597-0601.
[14] ZHANG Jun-qiu, HAN Zhi-wu,JIANG Jia-lian,GE Chao, Lü You,WANG Chao-fei. Three dimensional numerical simulation on antierosion of |coupling bionics of flexibility and configuration [J]. 吉林大学学报(工学版), 2011, 41(01): 139-0143.
[15] GUO Li-qun,WANG Deng-feng. Effect of frame stiffness on ride comfort of commercial vehicle [J]. 吉林大学学报(工学版), 2010, 40(04): 911-0914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!