Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (5): 1728-1738.doi: 10.13229/j.cnki.jdxbgxb20190674

Previous Articles    

Static test and finite element analysis of scale model of fabricated box culvert

Ya-feng GONG1(),Jia-xiang SONG1,Hai-peng BI1,Guo-jin TAN1(),Guo-hai HU2,Si-yuan LIN1   

  1. 1.College of Transportation, Jilin University, Changchun 130022, China
    2.Jilin Traffic Planning and Design Institute, Changchun 130022, China
  • Received:2019-07-02 Online:2020-09-01 Published:2020-09-16
  • Contact: Guo-jin TAN E-mail:gongyf@jlu.edu.cn;tgj@jlu.edu.cn

Abstract:

In order to provide basic data and technical support for the optimal design of prefabricated culvert, the mechanical properties of four types of culvert structures, namely, integral, flat-joint, circular hinge and tenon, are compared and analyzed by means of laboratory test and finite element analysis based on physical engineering. Firstly, the scale models of four kinds of culvert structures are constructed according to the similarity theory, and the static responses of these models in the full loading process are tested. Secondly, the mechanical properties of typical integral and circular hinged box cults are studied by finite element simulation. Finally, based on the test data and numerical simulation results, the mechanical properties of the four types of box culvert structures are analyzed and compared comprehensively, and some useful suggestions are given. The research results show that the failure modes of all four types of components are bending failure of the concrete at the bottom of the upper roof after cracking, but the setting of hinge joints significantly changes the stress state of the box culvert structure, especially the stress state of the side wall. The bearing capacity is similar to that of cracking load, that the integral box culvert structure has the maximal bearing capacity and circular hinged box culvert structure has the the minimal capacity.

Key words: bridge engineering, prefabricated culvert, scale model, static load test, finite element analysis

CLC Number: 

  • U449.1

Fig.1

Structural dimension drawing of prefabricated box culvert"

Table 1

List of scale models"

序号结构尺寸有、无铰缝构造图示结构型式
1

跨径:116cm

墙高:97.5 cm

涵长:25 cm

平缝式
2圆铰式
3-整体式
4榫接式

Fig.2

Structural design drawing of prefabricated box culvert"

Fig.3

Schematic diagram of test loading"

Fig.4

Arrangement of measuring points"

Fig.5

Failure pattern of integral component side wall"

Table 2

Test results"

结构类型开裂荷载极限荷载

荷载

/kN

上顶板

起裂位置

荷载

/kN

上顶板跨中 挠度/mm
平缝式17.30.32L26.412.41
圆铰式9.20.48L22.019.21
整体式20.00.38L32.07.21
榫接式14.00.36L23.09.04

Fig.6

Mid-span deflection-load curve of upper roof of four types of box culvert structures"

Fig.7

Displacement distribution rules of side walls of various models"

Fig.8

Strain distribution at mid-span section of upper roof of various box culvert structures"

Fig.9

Finite element model of integral box culvert structure"

Fig.10

Finite element model of circular hinged box culvert structure"

Fig.11

Mid-span deflection-load curve of top plate of circular hyinged box culvert"

Fig.12

Mid-span deflection-load curve of integral box culvert upper roof"

Fig.13

Axial force diagram of assembled box culvert steel bars in direction X"

Fig.14

Axial force diagram of assembled box culvert steel bars in direction Y"

Fig.15

Cloud diagram of first main stress of concrete"

1 胡可, 杨晓光, 陈发根, 等. 公路装配式钢筋混凝土通道[M]. 北京: 人民交通出版社, 2018.
2 马骞. 朔黄线K549+014涵洞病害原因分析与加固技术[J].铁道建筑, 2017(1): 84-86, 102.
Ma Qian. Disease cause analysis and reinforcement technology for culvert at section K549+014 on Shuozhou-Huanghuagang railway[J]. Railway Engineering, 2017(1): 84-86, 102.
3 Kim K, Yoo C H. Design loading on deeply buried box culverts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(1): 20-27.
4 Bennett R M, Wood S M, Drumm E C, et al. Vertical loads on concrete box culverts under high embankments[J]. Journal of Bridge Engineering, 2005, 10(6): 643-649.
5 李永刚, 李力. 钢筋混凝土涵洞顶部垂直土压力影响因素研究[J]. 长江科学院院报, 2006, 23(6): 72-74, 79.
Li Yong-gang, Li Li. Analysis on influence factors of vertical earth pressure on reinforced concrete culverts[J]. Journal of Yangtze River Scientific Research Institute, 2006, 23(6): 72-74, 79.
6 宫亚峰, 王博, 谭国金, 等. 吉林省两种典型装配式箱涵受力特性对比分析[J]. 吉林大学学报: 工学版, 2019, 49(6): 1865-1870.
Gong Ya-feng, Wang Bo, Tan Guo-jin, et al. Comparative analysis of mechanical characteristics of two typical fabricated culverts in Jilin[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1865-1870.
7 范鹤, 刘斌, 范泽, 等. 高填土涵洞相似材料模型试验与数值模拟[J]. 吉林大学学报: 工学版, 2008, 38(2): 399-403.
Fan He, Liu Bin, Fan Ze, et al. Model test with similar material and numerical simulation of culvert with high fills[J]. Journal of Jilin University(Engineering Editi-on), 2008, 38(2): 399-403.
8 陈保国, 骆瑞萍, 孙金山. 上埋式盖板涵受力特性及影响因素研究[J]. 岩土力学, 2011, 32(1): 199-206.
Chen Bao-guo, Luo Rui-ping, Sun Jin-shan. Study of stress characteristics and its influencing factors of embankment installation slab-culverts[J]. Rock and Soil Mechanics, 2011, 32(1): 199-206.
9 Garg A K, Abolmaali A. Finite-element modeling and analysis of reinforced concrete box culverts[J]. Journal of Transportation Engineering, 2009, 135(3): 121-128.
10 Moradi M, Valipour H, Foster S. Reserve of strength in inverted U-shaped RC culverts: effect of backfill on ultimate load capacity and fatigue life[J]. Journal of Bridge Engineering, 2016, 21(2): 1-10.
11 Abolmaali A, Garg A K. Effect of wheel live load on shear behavior of precast reinforced concrete box culverts[J]. Journal of Bridge Engineering, 2008, 13(1): 93-99.
12 李兆平, 苏会锋, 吕书清, 等. 装配式地铁车站结构双榫槽式接头抗弯力学性能试验研究[J]. 土木工程学报, 2017, 50(2): 28-32.
Li Zhao-ping, Su Hui-feng, Shu-qing Lyu, et al. Experimental study on flexural mechanical properties of the double tenon groove joints of prefabricated subway station[J]. China Civil Engineering Journal, 2017, 50(2): 28-32.
13 王立超, 李建光. 基于单桩抗压静载实验的桩筏基础协同分析数值模拟研究[J]. 工程建设, 2019, 51(1): 26-31.
Wang Li-chao, Li Jian-guang. Study on numerical simulation analysis of settlement under synergistic effect of pile-raft foundation based on static loading test of single pile[J]. Engineering Construction, 2019, 51(1): 26-31.
14 刘丽丽, 李刘峰. 装配式预制箱涵受力及稳定性分析[J]. 福建交通科技, 2019(3): 96-99.
Liu Li-li, li Liu-feng, Stress and stability analysis of prefabricated precast box culms[J]. Fujian Traffic Science and Technology, 2019(3): 96-99.
15 李勇, 赵晓莎, 陈彦江, 等. 钢管混凝土拱桥缩尺模型静动力试验研究[J]. 公路, 2019, 64(3): 99-106.
Li Yong, Zhao Xiao-sha, Chen Yan-jiang, al at. Static and dynamic test research of shrinkage model of concrete-filled steel tube arch bridge[J]. Highway, 2019, 64(3): 99-106.
16 颜良. 无腋角综合管廊结构足尺模型静载试验及有限元分析[D]. 长沙: 湖南大学土木工程学院, 2018.
Yan Liang. Static test and finite element analysis of full-scale model of utility tunnel structure without axillary angle[D]. Changsha: School of Architecture and Construction, Hunan University, 2018.
[1] Hua CHEN,Yao-jia CHEN,Bin XIE,Peng-kai WANG,Lang-ni DENG. Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1698-1708.
[2] Hao GAO,Jun-jie WANG,Hui-jie LIU,Jian-ming WANG. Design criterion and applied devices for controlled seismic behavior of continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1718-1727.
[3] Qian-hui PU,Jing-wen LIU,Gang-yun ZHAO,Meng YAN,Xiao-bin LI. Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 606-612.
[4] Yun-long ZHANG,Yang-yang GUO,Jing WANG,Dong LIANG. Natural frequency and mode of vibration of steel⁃concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 581-588.
[5] Bo-xin WANG,Hai-tao YANG,Qing WANG,Xin GAO,Xiao-xu CHEN. Bridge vibration signal optimization filtering method based on improved CEEMD⁃multi⁃scale permutation entropy analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 216-226.
[6] Miao ZHANG,Yong-jiu QIAN,Fang ZHANG,Shou-qin ZHU. Experimental analysis of spatial force performance of concrete-reinforced stone arch bridge based on enlarged section method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 210-215.
[7] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[8] Chun-ling ZHONG,Dong LIANG,Yun-long ZHANG,Jing WANG. Calculation of natural vibration frequency of simply supported beam strengthened by external prestressing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1884-1890.
[9] Lun-hua BAI,Rui-li SHEN,Xing-biao ZHANG,Lu WANG. In-plane stability of self-anchored suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1500-1508.
[10] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[11] Shi⁃cheng WAN,Qiao HUANG,Jian GUAN,Zhao⁃yuan GUO. Strengthening of continuous steel⁃concrete composite beams in negative moment region using prestressed carbon fiber⁃reinforced polymer plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1114-1123.
[12] Wan⁃heng LI,Lin SHEN,Shao⁃peng WANG,Shang⁃chuan ZHAO. Damage assessment of bridge construction based onmulti⁃stage subregion mobile test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 773-780.
[13] HUI Ying-xin,MAO Ming-jie,LIU Hai-feng,ZHANG Shang-rong. Influence of structural seismic response of bridges crossing active fault [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1725-1734.
[14] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
[15] LIU Guo-zheng, SHI Wen-ku, Chen Zhi-yong. Finite element analysis of transmission error for hypoid gears considering installation error [J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!