Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 385-393.doi: 10.13229/j.cnki.jdxbgxb.20220323

Previous Articles    

Mechanical model of rigid⁃flexible coupling positioning stage based on floating coordinate method

Zhi-jun YANG(),Chi ZHANG,Guan-xin HUANG()   

  1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment,Guangdong University of Technology,Guangzhou 510006,China
  • Received:2022-03-29 Online:2024-02-01 Published:2024-03-29
  • Contact: Guan-xin HUANG E-mail:yangzj@gdut.edu.cn;guanxinhuang@gdut.edu.cn

Abstract:

The precision of traditional precision positioning stages are limited due to mechanical friction, so it is difficult to meet the motion requirements of large stroke and high precision. In this paper, a single drive rigid-flexible coupling positioning stage combined with macro- micro composite structure was proposed. Compared with the other macro-micro composite stage, it greatly simplified the design of mechanical structure and motion control system. Based on the floating coordinate method and finite element method, the static and dynamic model of the single drive rigid-flexible coupling positioning stage was established. The analysis results of these models were compared with the static analysis results of ABAQUS finite element software and the analytical solution of the simplified dynamic model, the maximum relative errors were 1.6% and 3.72% respectively. It is proved that this theoretical model has high prediction accuracy, which can provide parameters for the optimal design and precision motion control of the single drive rigid-flexible coupling stage.

Key words: mechanical engineering, rigid-flexible coupling dynamics, finite element analysis, flexure hinge, positioning stage

CLC Number: 

  • TH113.1

Fig.1

Single drive rigid-flexible coupling stage"

Fig.2

Geometric model of single drive rigid-flexible coupling stage"

Fig.3

Distribution diagram of flexure hinges"

Fig.4

Schematic diagram of flexure hinge dimensions"

Fig.5

Schematic diagram of stage coordinates"

Table 1

Quality parameters of stages"

平台类型质量/kg
柔性平台2.2625
刚性平台c10.0974
刚性平台c20.0974
刚性平台c30.0974
刚性平台c40.0974

Table 2

Material parameters of flexure hinges"

柔性铰链类型杨氏模量E/Gpa剪切模量G/Gpa

泊松比

υ

长度

l/mm

厚度

t/mm

宽度

w/mm

直角7226.90.330121.020
簧片21181.90.28830.436

Fig.6

Detail diagram of flexure hinges deformation"

Table 3

Stiffness error(traslation)"

工作方向平动/mkPA/(N·m-1kPA/(N·m-1误差/%
X2.25E-94.44E94.39E91.19
Y6.79E-81.47E81.47E80.33
Z1.16E-98.60E98.59E90.13

Table 4

Stiffiness error(rotation)"

工作 方向转动/ radkZA/ (N?m·rad-1kZM/ (N?m·rad-1误差/%
θX1.19E-78.43E78.43E70.05
θY1.44E-76.93E76.91E70.14
θZ2.92E-73.43E73.38E71.60

Fig.7

Simplified model of the single drive rigid-flexible coupling stage"

Table 5

Parameters of simplified model"

参数物理意义
mf刚性平台的质量
ms柔性平台的质量
Js柔性平台的转动惯量
Kr刚柔耦合平台绕X轴方向转动刚度
Kt刚柔耦合平台沿Y轴方向平动刚度
ds柔性平台相对于惯性坐标系沿Y轴方向的平动位移
Δdf刚性平台相对于浮动坐标系沿Y轴方向的平动位移
θs柔性平台绕惯性坐标系X轴方向的转动位移
Ff刚性平台受到Y轴方向的集中力
Fs柔性平台受到Y轴方向的集中力
Ms柔性平台受到X轴方向的集中力矩

Fig.8

Dynamic error of the flexible stage deformation along Y-axis"

Fig.9

Dynamic error of the flexible stage deformation around X-axis"

1 Kerschner R K. Differential motor drive for an XY stage[P].USA:
2 Mao J, Tachikawa H, Shimokohbe A. Precision positioning of a DC-motor-driven aerostatic slide system[J]. Precision Engineering, 2003, 27(1): 32-41.
3 Shinno H, Hashizume H, Yoshioka H, et al. X-Y-θ nano-positioning table system for a mother machine[J]. CIRP Annals-Manufacturing Technology, 2004, 53(1): 337-340.
4 王延风. 磁悬浮精密定位工作台机电一体化CAD/CAE集成研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2004.
Wang Yan-feng. Research on the magnetic levitation precision stage with mechachonics CAD/CAE[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2004.
5 Sharon A, Hogan N, Hardt D E. High bandwidth force regulation and inertia reduction using a macro/micro manipulator system[C]∥IEEE International Conference on Robotics & Automation, Pennsylvania, USA, 1988: 3247374.
6 于靖军, 裴旭, 毕树生, 等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报, 2010, 46(13): 2-13.
Yu Jing-jun, Pei Xu, Bi Shu-sheng, et al. State-of-arts of design method for flexure mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13): 2-13.
7 曲兴田, 董景石, 郭俊臣, 等. 基于柔性铰链放大的压电叠堆泵[J]. 吉林大学学报:工学版, 2008, 38(3): 552-556.
Qu Xing-tian, Dong Jing-shi, Guo Jun-chen, et al. Piezoelectric stack pump based on flexure hinge magnification[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(3): 552-556.
8 Uchino K. Ceramic actuators: principles and applications[J]. MRS Bulletin, 1993, 18(4): 42-48.
9 朱军辉. 全压电驱动的二维大行程纳米定位平台研究[D]. 苏州: 苏州大学机电工程学院, 2015.
Zhu Jun-hui. Research on 2-DOF long stroke nano-positioning stage driven by hybrid piezoelectric actuators[D]. Suzhou: College of Mechanical and Electrical Engineering, Suzhou University, 2015.
10 Juhász L, Maas J, Borovac B. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators[J]. Mechatronics, 2011, 21(1): 329-338.
11 张涛, 孙立宁, 蔡鹤皋. 压电陶瓷基本特性研究[J]. 光学精密工程, 1998, 6(5): 27-31.
Zhang Tao, Sun Li-ning, Cai He-gao. Study on the fundamental characteristics of piezoelectric element[J]. Optics and Precision Engineering, 1998, 6(5): 27-31.
12 Kawashima K, Arai T, Tadano K, et al. Development of coarse/fine dual stage using pneumatically driven bellows actuator and cylinder with air bearings[J]. Precision Engineering, 2010, 34(3):526-533.
13 Shinno H, Yoshioka H, Sawano H. A newly developed long range positioning table system with a sub-nanometer resolution[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1): 403-406.
14 杨志军, 高忠义, 王丽君, 等. 面向刚柔耦合定位平台的模型预测控制算法[J]. 吉林大学学报: 工学版, 2022, 52(12): 2806-2815.
Yang Zhi-jun, Gao Zhong-yi, Wang Li-jun, et al. Model predictive control algorithm for rigid-flexible coupling positioning stage[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12): 2806-2815.
15 胡俊峰, 徐贵阳. 四种不同柔性铰链的三自由度微定位平台性能比较[J]. 机械设计与制造, 2014(2): 127-129.
Hu Jun-feng, Xu Gui-yang. Characteristics comparison of a 3-DOF micro positioning stage with four different flexible hinges[J]. Machinery Design & Manufacture, 2014(2): 127-129.
16 Li R, Yang Z, Cai B, et al. A compliant guiding mechanism utilizing orthogonally oriented flexures with enhanced stiffness in degrees-of-constraint[J]. Mechanism and Machine Theory, 2022, 167: 104555.
17 吴胜宝, 章定国. 大范围运动刚体-柔性梁刚柔耦合动力学分析[J]. 振动工程学报, 2011, 24(1):1- 7.
Wu Sheng-bao, Zhang Ding-guo. Rigid-flexible coupling dynamic analysis of hub-flexible beam with large overall motion[J]. Journal of Vibration Engineering, 2011, 24(1): 1-7.
18 刘铸永. 刚-柔耦合系统动力学建模理论与仿真技术研究[D]. 上海: 上海交通大学船舶海洋与建筑工程学院, 2008.
Liu Zhu-yong. Study on modeling theory and simulation technique for rigid-flexible coupling systems dynamics[D]. Shanghai: School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 2008.
19 丁楠. 柔性多体系统动力学建模方法研究[D]. 长春: 吉林大学数学学院, 2013.
Ding Nan. Studies on modeling of flexible multi-body system dynamics[D]. Changchun: School of Mathematics, Jilin University, 2013.
20 李彬, 刘锦阳, 洪嘉振. 计及剪切变形的Timoshenko梁的刚-柔耦合动力学[J]. 计算力学学报, 2006, 23(4): 419-422.
Li Bin, Liu Jin-yang, Hong Jia-zhen. Coupling dynamics of Timoshenko beam with shear deformation[J]. Chinese Journal of Computational Mechanics, 2006, 23(4): 419-422.
21 张军锋, 尹会娜, 孙大勇, 等. 基于形函数推导考虑剪切变形的欧拉梁单元刚度矩阵[J]. 重庆交通大学学报:自然科学版, 2020, 39(9): 59-66.
Zhang Jun-feng, Yin Hui-na, Sun Da-yong, et al. Euler beam element stiffness matrix considering shear deformation based on shape function derivation[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(9): 59-66.
[1] Lin-rong SHI,Wu-yun ZHAO. Design and test of rolling spoon type flaxes precision hole sower for caraway in northwest cold and arid agricultural region [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2706-2717.
[2] Bo-sen CHAI,Guang-yi WANG,Dong YAN,Guo-ren ZHU,Jin ZHANG,Heng-sheng LYU. Numerical simulation of cavitation in torque converter and analysis of its influence on performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2236-2244.
[3] Guo-hui CHEN,Ye-yin XU,Ying-hou JIAO. Meshing stiffness calculation and vibration analysis of helical gear considering deflection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1902-1910.
[4] Sheng LI,Jia ZHU,De-hui HUANG,Cun-fu CHEN,Hong-qing FEI,Wei FENG,Xing-jun HU. Structural parameters optimization of louver fins of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 998-1006.
[5] Jian WANG,Wei YU,Bin WANG. Effects of methanol substitution percent on combustion and emission of diesel engines under plateau condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 954-963.
[6] Li-juan YU,Yang AN,Jia-long HE,Guo-fa LI,Sheng-xu WANG. Research progress and development trend of extrapolation method in electromechanical equipment load spectrum [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 941-953.
[7] Bo-sen CHAI,Dong YAN,Guang-yi WANG,Wen-jie ZUO. Three-dimensional vortex characteristic analysis and simulation evaluation of peach cavity hydrodynamic coupling under braking condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3045-3055.
[8] Yang XIAO,Jie WANG,Meng-jun LIU,Fa-qing YANG,Tian-yao ZHANG,Wei LAN. Improved mechanical model of gas diffusion layer in proton exchange membrane fuel cell [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2147-2155.
[9] Zhen SONG,Jie LIU. Time series prediction algorithm of vibration frequency of rotating machinery [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1764-1769.
[10] Ling ZHU,Qiu-cheng WANG. New energy vehicle drive system coordinated control method under spatial geometric constraints [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1509-1514.
[11] Zhao-hui JIN,Le-qi GU,Wei HONG,Fang-xi XIE,Tian YOU. Analysis on pressure fluctuation of hydraulic variable valve actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 773-780.
[12] Guo-fa LI,Yan-bo WANG,Jia-long HE,Ji-li WANG. Research progress and development trend of health assessment of electromechanical equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 267-279.
[13] Zhi-jun YANG,Zhong-yi GAO,Li-jun WANG,Guan-xin HUANG,Yu-tai WEI. Model predictive control algorithm for rigid⁃flexible coupling positioning stage [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2806-2815.
[14] Lei WANG,Bing-han HUANG,Jia-hui CONG,Li HUI,Song ZHOU,Yong-zhen XU. Effect of ultrasonic impact on fatigue performance of friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2542-2548.
[15] Jian-lin ZUO,En-bo LIU,Zheng-bin JIA,Sheng-hao XU,Jian-lin XIAO. Finite element analysis of bionic prosthesis based on design of medial meniscus structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2319-2324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!