Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 2819-2826.doi: 10.13229/j.cnki.jdxbgxb.20221574

Previous Articles    

Temporal instability analysis of factors affecting injury severities of elderly drivers

Yi-yong PAN(),Jing-ting WU,Xuan-ye Miao   

  1. College of Automobile and Traffic Engineering,Nanjing Forestry University,Nanjing 210037,China
  • Received:2022-12-08 Online:2024-10-01 Published:2024-11-22

Abstract:

In order to explore the influence of temporal instability on crash injury severities, a random parameter approach with heterogeneity in means and variances was constructed to analyze the heterogeneity of elderly driver injury severities. The 2015 to 2017 traffic crash data in a state of the United States was used for the analysis. 19 influencing factors were selected based on the characteristics of elderly, vehicle, road, road environment, and built environment. The average marginal effect was used to reflect the effect of each factor on the crash injury severities. The log likelihood ratio was used to test the global and local temporal instability of the influencing factors of crash injury severities. The results show that there is significant temporal instability in the influencing factors of elderly driver injury severities. The influence of three factors on the injury severities, namely, escape after collision, rural area and dry road surface environment, changes positively and negatively with years. In the built environment characteristics, the influence of crash occurring in commercial district on the serious injury severities changes positively and negatively with years. There is temporal instability in the heterogeneity of influencing factors of elderly driver injury severities. The random parameters are related to years and the influencing factors of their mean and variance are significantly different in years.

Key words: traffic engineering, crash injury severity, random parameter Logit with heterogeneity in means and variances, elderly drivers, temporal instability

CLC Number: 

  • U491.31

Table 1

Distribution of crash data"

事故类型2015年2016年2017年
仅财产损失3 035(72.8%)2 912(81.2%)3 434(79.8%)
轻伤1 042(25.0%)587(16.4%)770(17.9%)
重伤88(2.2%)86(2.4%)98(2.3%)

Table 2

2015-2017 Model parameter estimates"

自变量2015年2016年2017年
参数z-值参数z-值参数z-值
截距[MI]0.9334.561.8065.93-1.231-3.16
截距标准差[MI]0.9352.92
截距[SI]-16.07-2.59
截距标准差[SI]9.1902.42
驾驶员 特性驾驶员身体状况为正常[CI]1.47510.091.7817.56
驾驶员身体状况为正常[MI]-0.965-10.23
驾驶员身体状况为生病[MI]0.3912.31-0.965-10.23
驾驶员身体状况为生病[SI]3.8174.32
驾驶员身体状况为疲劳[MI]-0.933-3.54
驾驶员身体状况为其他[SI]1.1916.181.8056.68
驾驶员性别为男性[MI]-0.234-2.32
驾驶员性别为男性[SI]1.9191.60
驾驶员性别为女性[SI]-0.669-2.52
碰撞后逃逸[CI]2.1355.30
碰撞后逃逸[MI]1.3110.73
碰撞后没有逃逸[MI]1.2963.65
驾驶员未分心[SI]-1.691-8.72-1.759-2.93

车辆

特性

车辆速度为[0,10] km/h[CI]2.1442.551.0803.17
车辆速度为(10,20] km/h[CI]0.6353.08
车辆速度为(20,30] km/h[CI]0.5622.91
车辆速度为(20,30] km/h[MI]-0.245-1.84
车辆速度为[50,60] km/h[MI]0.2662.42
车辆类型为摩托车[CI]-3.632-6.74
车辆类型为摩托车[MI]3.51311.63
车辆类型为SUV[CI]-2.2930.33-0.259-2.40
车辆类型为小汽车[CI]0.3994.14
安全气囊未蹦出[CI]1.44811.11
安全气囊未蹦出[MI]-1.593-8.87-1.281-13.50

道路

特性

下坡[CI]-0.655-2.19
山底/山顶[CI]1.2932.07
T/Y[CI]-0.381-1.99
单车道[CI]3.3671.64
信号控制[CI]0.59911.12
2条车道[MI]0.4763.53
3条车道[MI]-0.869-2.58
直线[CI]0.6055.77
直线[MI]-0.539-4.99

环境

特性

下雨[CI]0.6983.42
天晴[CI]-0.26010.10
发生在工作区[CI]1.8876.19
发生在工作区标准差[CI]5.2901.54
发生在农村[CI]0.7370.36-0.374-3.61
发生在农村[MI]0.4522.99
干燥[CI]-0.177-1.56
干燥[SI]-1.574-5.16
黑暗有灯光[CI]0.4462.380.3642.45
黑暗有灯光[SI]-1.008-2.54
黎明/黄昏[MI]-0.495-2.16
天亮[MI]0.2992.90

建成

环境

特性

300 m缓冲区内存在公园[CI]-1.735-1.86
300 m缓冲区内存在银行[MI]1.2031.57
事故发生在商业区[SI]-1.175-1.572.0831.82

均值异

质性

截距:农村 [MI]0.4936.18
事故发生在工作区:碰撞后逃逸[CI]3.6301.82
截距:直线[SI]-3.632-21.93

方差异

质性

截距:速度为[0,10] [MI]1.0701.070
事故发生在工作区:单车道[CI]1.1172.29
截距:摩托车[SI]0.4622.84

模型

估计

样本数量4 5903 5904 299
仅含常数的对数似然-5 438.130-3 944.01-4 722.934
模型收敛的对数似然-2 547.387-1 643.57-1 988.858
McFadden ρ20.5320.5830.579

Table 3

Total log-likelihood ratio test"

(ti,ti+1)LL(βtiti+1)LL(βti)LL(βti+1)χT2自由度置信水平
(2015,2016)-4 338.653-2 547.020-1 643.547296.17219[>99.99%]
(2016,2017)-3 697.333-1 643.547-1 988.858129.85612[>99.99%]

Table 4

Local log-likelihood ratio test"

(ti,tj)χL2自由度置信水平
(2015,2016)311.29521[>99.99%]
(2015,2017)326.32421[>99.99%]
(2016,2015)137.13227[>99.99%]
(2016,2017)30.02821[>95.00%]
(2017,2015)83.86827[>99.99%]
(2017,2016)83.73021[>95.00%]

Table 5

Marginal effect value of each influencing factor from 2015 to 2017"

变量仅财产损失事故轻伤事故重伤事故
201520162017201520162017201520162017
驾驶员特性驾驶员身体状况为正常0.123 20.115 80.079 9-0.119 7-0.107 1-0.082 9-0.010 8-0.012 50.000 9
驾驶员身体状况为生病-0.003 8-0.001 40.011 2-0.002 2-0.000 80.011 7
驾驶员身体状况为疲劳0.003 3-0.004 80.001 0
驾驶员身体状况为其他-0.004 6-0.006 4-0.010 9-0.017 00.094 60.106 7
驾驶员性别为男性0.015 8-0.003 4-0.025 4-0.002 40.011 60.012 1
驾驶员性别为女性0.001 30.001 8-0.006 8
碰撞后逃逸0.004 0-0.001 2-0.001 20.000 9-0.001 7-0.000 1
碰撞后没有逃逸-0.146 50.211 9-0.003 1
驾驶员未分心0.007 60.008 30.018 30.005 8-0.029 5-0.011 2
车辆特性车辆速度[0,10] km/h0.008 60.003 9-0.003 8-0.002 1-0.002 1-0.001 3
车辆速度(10,20] km/h0.004 4-0.002 8-0.000 6
车辆速度(20,30] km/h0.003 30.006 3-0.005 1-0.007 80.002 2-0.003 5
车辆速度[50,60] km/h-0.005 70.00950.001 9
车辆类型为摩托车-0.003 1-0.002 40.017 7-0.10190.010 0-0.001 7
车辆类型为SUV-0.008 8-0.006 00.061 40.01020.013 70.000 3
车辆类型为小汽车0.020 3-0.019 2-0.006 2
安全气囊未蹦出0.120 10.089 10.110 3-0.088 1-0.104 7-0.1019-0.035 6-0.044 80.001 9
道路特性下坡-0.002 70.004 60.001 9
山底/山顶0.000 8-0.000 50.000 0
T/Y-0.002 50.004 10.000 1
单车道0.012 7-0.006 0-0.003 9
信号控制0.002 5-0.003 6-0.000 8
2条车道-0.019 70.038 1-0.008 5
3条车道0.002 1-0.001 90.001 6
直线0.056 50.051 8-0.061 7-0.0651-0.020 70.000 5
环境特性下雨0.006 3-0.004 2-0.007 3
天晴-0.006 60.008 80.003 3
发生在工作区0.080 2-0.164 3-0.060 1
发生在农村0.006 6-0.026 9-0.0322-0.001 20.050 70.0478-0.002 7-0.011 00.001 3
干燥0.010 7-0.01700.020 00.2440-0.064 90.000 8
黑暗有灯光0.000 80.004 80.00460.001 0-0.005 8-0.0054-0.004 1-0.002 6-0.000 3
黄昏/黎明0.002 5-0.002 80.002 8
白天-0.020 50.032 1-0.009 1
建成环境300 m缓冲区内存在公园-0.000 70.001 40.000 5
300 m缓冲区内存在银行-0.000 60.001 0-0.000 1
事故发生在商业区0.000 4-0.00060.000 5-0.0003-0.000 70.002 3
1 胡立伟, 吕一帆, 赵雪亭, 等. 基于数据驱动的交通事故伤害程度影响因素及其耦合关系研究[J]. 交通运输系统工程与信息, 2022, 22(5):117-124, 134.
Hu Li-wei, Yi-fan Lyu, Zhao Xue-ting, et al. Influence factors and coupling relationship of traffic accident injury degree based on a data-driven approach[J]. Journal of Transportation Systems Engineering and Information Technology, 2022,22(5):117-124, 134.
2 Lin Z J, Fan W. Injury severity analysis of cyclists using a mixed logit model of intersection and non-intersection location[J]. Journal of Transport Safety and security, 2021, 13(2):223-245.
3 Moudon A V, Lin L, Jiao J, et al. The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington[J]. Accid Anal Prev, 2011, 43(1):11-24.
4 潘义勇, 吴静婷, 施颖, 等. 建成环境对老年人交通事故严重程度异质性影响[J]. 交通运输系统工程与信息, 2022, 22(3):224-230.
Pan Yi-yong, Wu Jing-ting, Shi Ying, et al. Heterogeneous effects of built environment on elderly traffic accident injury severities[J]. Journal of Transportation Systems Engineering and Information Technology, 2022,22(3):224-230.
5 Aziz H M A, Ukkusuri S V, Hasan S. Exploring the determinants of pedestrian-vehicle crash severity in New York City[J]. Crash Analysis & Prevention, 2013, 50(1):1298-1309.
6 Mannering F L. Temporal instability and the analysis of highway crash data[J]. Analytic Methods in Crash Research, 2018, 17:1-13.
7 Behnood A, Mannering F L. The temporal stability of factors affecting driver-injury severities in single-vehicle crashes: some empirical evidence[J]. Analytic Methods in Crash Research, 2015, 8:7-32.
8 Malyshkina N V, Mannering F L. Markov switching multinomial logit model: an application to crash-injury severities[J]. Crash Analysis & Prevention, 2009, 41(4):829-838.
9 Behnood A, Mannering F L. An empirical assessment of the effects of economic recessions on pedestrian-injury crashes using mixed and latent-class models[J]. Analytic Methods in Crash Research, 2016, 12:1-17.
10 温惠英, 汤左淦, 卢德佑. 考虑异质性的翻车事故伤害建模[J]. 中国安全科学学报, 2018, 28(9):13-18.
Wen Hui-ying, Tang Zuo-gan, Lu De-you. Modeling severity of rollover accidents accounting for heterogeneity[J]. Chinese Journal of Safety Science, 2018,28(9):13-18
11 宋栋栋, 杨小宝, 祖兴水, 等. 基于均值异质性随机参数Logit模型的城市道路事故驾驶员受伤严重程度研究[J]. 交通运输系统工程与信息, 2021, 21(3):214-220.
Song Dong-dong, Yang Xiao-bao, Zu Xing-shui, et al. Research on the injury severity of drivers in urban road crashs based on mean heterogeneity random parameter Logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021,21(3): 214-220.
[1] Rong-gui ZHOU,Pei GAO,Yu-xuan LI,Jian ZHOU. Abnormal driving behavior thresholds of highway minibuses based on trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2581-2587.
[2] Yun PU,Yin XU,Hai-xu LIU,Yi-fan TAN. An improved car⁃following model for connected and automated vehicles considering impact of multiple vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1285-1292.
[3] Qing-lu MA,Hao YAN,Zhen-yu NIE,Yang-mei LI. Cooperative control method for intelligent networked vehicles in ramp confluence area [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1332-1346.
[4] Qian CAO,Zhi-hui LI,Peng-fei TAO,Hai-tao LI,Yong-jian MA. Deployment of heterogeneous sensors for traffic accident detection and prevention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 969-978.
[5] Xin ZHANG,Qi-zhou HU,Jun HE,Xiao-yu WU. Traffic condition diagnosis of confluence areas considering traffic infarction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 478-484.
[6] Wei-hua ZHANG,Jia-ming LIU,Li-peng XIE,Heng DING. Lane⁃changing model of autonomous vehicle in weaving area of expressway in intelligent and connected mixed environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 469-477.
[7] Hao YUE,Qi-yue ZHANG,Zi-yu YANG,Meng-jie REN,Xu ZHANG. Iterative weighted algorithms of static congestion traffic assignment considering spatial queuing [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 136-145.
[8] Xiao-jing DU,Rong-han YAO. Evolutionary game mechanism of mandatory lane changing for exiting for intelligent connected bus [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 124-135.
[9] Zhuang-lin MA,Shan-shan CUI,Da-wei HU,Jin WANG. Travel mode choice of traditional car travelers after implementation of driving restriction policy [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1981-1993.
[10] Ya-li ZHANG,Rui FU,Wei YUAN,Ying-shi GUO. Classification and recognition model of entering and leaving stops' driving style considering energy consumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2029-2042.
[11] Chao-ying YIN,Ying LU,Chun-fu SHAO,Jian-xiao MA,De-jie XU. Impacts of built environment on commuting mode choice considering spatial autocorrelation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1994-2000.
[12] Heng-yan PAN,Yong-gang WANG,De-lin LI,Jun-xian CHEN,Jie SONG,Yu-quan YANG. Evaluating and forecasting rear⁃end collision risk of long longitudinal gradient roadway via traffic conflict [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1355-1363.
[13] Kai LU,Guang-hui XU,Zhi-hong YE,Yong-jie LIN. Algebraic method of bidirectional green wave coordination control for the head of the platoon considering the clearance time [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 421-429.
[14] Qian CAO,Zhi-hui LI,Peng-fei TAO,Yong-jian MA,Chen-xi YANG. Traffic accident risk assessment method for road network considering risk heterogeneity [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2817-2825.
[15] Xin ZHANG,Wei-hua ZHANG. Safety analysis of main line under different traffic conditions in expressway confluence area [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1308-1314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!