Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3568-3576.doi: 10.13229/j.cnki.jdxbgxb.20230103

Previous Articles     Next Articles

Direction of arrival estimation based on improved orthogonal matching pursuit algorithm

Hui-jing DOU(),Dong-xu XIE,Wei GUO,Lu-yang XING   

  1. Department of Information Science,Beijing University of Technology,Beijing 100124,China
  • Received:2023-02-06 Online:2024-12-01 Published:2025-01-24

Abstract:

To address the problem of high computational complexity and inability to remove incorrect atoms in the orthogonal matching pursuit (OMP) algorithm when high estimation accuracy is required, an improved OMP algorithm based on the improved grey wolf optimization algorithm is proposed. Firstly, a nonlinear convergence factor based on the sigmoid function is proposed to improve the grey wolf algorithm, and a dynamic weighting method is introduced into the position update strategy of the grey wolf algorithm. Then, the improved grey wolf algorithm is applied to the field of compressed sensing DOA estimation, and the atom matching process of the OMP algorithm is optimized by using the improved grey wolf algorithm, which reduces the computational complexity and running time of the OMP algorithm, and introduces a backtracking thought to improve the correctness of the algorithm. Finally, simulation experiments demonstrate that the proposed algorithm has higher estimation accuracy, faster operation speed, and stronger anti-noise ability compared to the original algorithm.

Key words: signal and information processing, direction of arrival (DOA) estimation, compressive sensing, sparse refactoring, orthogonal matching pursuit, grey wolf optimization algorithm

CLC Number: 

  • TN911.7

Fig.1

Schematic diagram of the array receiving signal"

Fig.2

Convergence factor a curve"

Table 1

Three different algorithms are the best results for the test function"

函数名PSOGWOSGWO
均值标准差均值标准差均值标准差
Sphere-5.200 3e-261.190 6e-25-1.542 6e-984.178 3e-98-1.949e-1475.635 9e-119
Schwefel 2.22-2.618 8e-137.847 2e-13-1.695 7e-552.198 7e-55-1.042 9e-811.896 7e-81
Schwefel 1.2-3.707 3e-065.490 7e-06-3.091 7e-459.186 1e-45-1.039 1e-893.192 7e-89
Schwefel 2.21-5.117e-064.08e-06-9.430 1e-361.508 2e-35-5.746 7e-597.122 1e-59
Rastrigin-6.168 72.335 70000
Griewank-0.091 6880.032 499-0.006 962 60.016 17200
Ackley-1.258 5e-123.769 6e-12-4.085 6e-151.123 5e-15-3.730 3e-150
Hartman-3.862 80.000 253 9-3.861 80.002 455 7-3.859 92.269 1e-15

Fig.3

Convergence curves of each algorithm under different test functions"

Fig.4

DOA estimation of coherent signal sources by each algorithm"

Fig.5

Average running time of the algorithm varies with sparsity"

Fig.6

Success rate of the algorithm changes with the signal-to-noise ratio"

1 Liang G L, Shi Z B, Qiu L H, et al.Sparse Bayesian learning based direction-of-arrival estimation under spatially colored noise using acoustic hydrophone arrays[J]. Journal of Marine Science and Engineering, 2021, 9(2): No.9020127.
2 Qian J H, Lops M, Zheng L, et al.Joint system design for coexistence of MIMO radar and MIMO communication[J]. IEEE Trans Signal Process, 2018, 66(13): 3504-3519.
3 Schmidt R O. Multiple emitter location and signal parameters estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3) : 276-280.
4 Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, 37(7): 984-995.
5 吴小川,邓维波,杨强. 基于CS-MUSIC算法的DOA估计[J]. 系统工程与电子技术, 2013, 35(9):1821-1824.
Wu Xiao-chuan, Deng Wei-bo, Yang Qiang. DOA estimation method based on CS-MUSIC algorithm[J]. Systems Engineering and Electronics, 2013,35(9): 1821-1824.
6 Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
7 Mirjalili S, Mirjalili S M, Lewis A.Grey wolf optimization[J].Advances in Engineering Software,2014,69(7): 46-61.
8 王敏,唐明珠. 一种新型非线性收敛因子的灰狼优化算法[J].计算机应用研究, 2016, 33(12):3648-3653.
Wang Min, Tang Ming-zhu. Novel grey wolf optimization algorithm based on nonlinear convergence factor[J]. Application Research of Computers, 2016, 33(12): 3648-3653.
9 郭振洲,刘然,拱长青,等. 基于灰狼算法的改进研究[J]. 计算机应用研究,2017,34(12): 3603-3606, 3610.
Guo Zhen-zhou, Liu Ran, Gong Chang-qing, et al. Study on improvement of gray wolf algorithm[J]. Application Research of Computers, 2017,34(12): 3603-3606, 3610.
10 龙文,蔡绍洪,焦建军,等. 一种改进的灰狼优化算法[J]. 电子学报,2019,47(1):169-175.
Long Wen, Cai Shao-hong, Jiao Jian-jun, et al. An improved grey wolf optimization algorithm[J]. Acta Electronica Sinica, 2019,47(1):169-175.
11 王秋萍,王梦娜,王晓峰.改进收敛因子和比例权重的灰狼优化算法[J].计算机工程与应用,2019,55(21):60-65, 98.
Wang Qiu-ping, Wang Meng-na, Wang Xiao-feng. Improved grey wolf optimizer with convergence factor and proportional weight[J]. Computer Engineering and Applications, 2019, 55(21):60-65.
12 魏政磊,赵辉,韩邦杰,等. 具有自适应搜索策略的灰狼优化算法[J].计算机科学,2017,44(3):259-263.
Wei Zheng-lei, Zhao Hui, Han Bang-jie, et al. Gray wolf optimization algorithm with self-adaptive searching strategy[J].Computer Science, 2017, 44 (3) :259-263.
13 Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
14 Rodirguez L, Castillo O, Soria J,et al. A fuzzy hierarchical operator in the grey wolf optimizer algorithm[J].Applied Soft Computing, 2017, 57:315-328.
15 Xin J, Li S, Sheng J, et al. Application of improved particle swarm optimization for navigation of unmanned surface vehicles[J]. Sensors, 2019,19(14):No.3096.
16 杨琴. 基于压缩感知的DOA估计算法研究[D]. 西安:西安电子科技大学电子工程学院, 2019.
Yang Qin. Research on DOA estimation algorithm based on compressed sensing[D]. Xi´an:School of Electronic Engineering,Xidian University, 2019.
17 张文胜,郝孜奇,朱冀军, 等. 基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J]. 交通运输系统工程与信息,2020,20(2):196-203.
Zhang Wen-sheng, Hao Zhi-qi, Zhu Ji-jun, et al. BP neural network model for short-time traffic flow forecasting based on transformed grey wolf optimizer algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2020,20(2):196-203.
18 张文胜, 郝孜奇, 朱冀军, 等. 基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(2): 196-203.
Zhang Wen-sheng, Hao Zi-qi, Zhu Ji-jun, et al. BP neural network model for short-time traffic flow forecasting based on transformed grey wolf optimizer algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2020,20(2):196-203.
[1] Hai-tao WANG,Hui-zhuo LIU,Xue-yong ZHANG,Jian WEI,Xiao-yuan GUO,Jun-zhe XIAO. Forward-looking visual field reproduction for vehicle screen-displayed closed cockpit using monocular vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1435-1442.
[2] Yu-ting SU,Meng-yao JING,Pei-guang JING,Xian-yi LIU. Deep photometric stereo learning framework for battery defect detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3653-3659.
[3] Jin-peng TIAN,Bao-jun HOU. Compressive sensing image reconstruction based on deep unfolding self-attention network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 3018-3026.
[4] Chun-yang WANG,Wen-qian QIU,Xue-lian LIU,Bo XIAO,Chun-hao SHI. Accurate segmentation method of ground point cloud based on plane fitting [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 933-940.
[5] Xue-mei LI,Chun-yang WANG,Xue-lian LIU,Chun-hao SHI,Guo-rui LI. Point cloud registration method based on supervoxel bidirectional nearest neighbor distance ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1918-1925.
[6] Xue-mei LI,Chun-yang WANG,Xue-lian LIU,Da XIE. Time delay estimation of linear frequency-modulated continuous-wave lidar signals via SESTH [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 950-958.
[7] Le-ping LIN,Zeng-tong LU,Ning OUYANG. Face reconstruction and recognition in non⁃cooperative scenes [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2941-2946.
[8] Hui-jing DOU,Gang DING,Jia GAO,Xiao LIANG. Wideband signal direction of arrival estimation based on compressed sensing theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2237-2245.
[9] Xin-yu JIN,Mu-han XIE, SUN-Bin. Grain information compressed sensing based on semi-tensor product approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 379-385.
[10] Li⁃min GUO,Xin CHEN,Tao CHEN. Radar signal modulation type recognition based on AlexNet model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 1000-1008.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Hong-zhi,WANG Xian-long,ZHOU Ting-ting. Image block compressive sensing reconstruction based on smooth L0 norm [J]. 吉林大学学报(工学版), 2015, 45(1): 322-327.
[13] ZHU Yong-gui, LIU Ping, CONG Jia. Splitting method to solve Lp problem in sparse image reconstruction [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 55-59.
[14] ZHAO Chun-hui, TENG Zhi-jun, MA Shuang. Distributed compressive wideband spectrum sensing based on generalized power spectrum density [J]. , 2012, 42(04): 1015-1020.
[15] CHEN Mei-Mei, GUO Shu-Xu, WANG Yao, WU Bin, XU Si-Yao, SHAO Xiang-Xin. Finger vein image denoising based on compressive sensing [J]. 吉林大学学报(工学版), 2011, 41(02): 559-0562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .