Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3653-3659.doi: 10.13229/j.cnki.jdxbgxb.20230130

Previous Articles     Next Articles

Deep photometric stereo learning framework for battery defect detection

Yu-ting SU(),Meng-yao JING,Pei-guang JING(),Xian-yi LIU   

  1. School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
  • Received:2023-02-15 Online:2024-12-01 Published:2025-01-24
  • Contact: Pei-guang JING E-mail:ytsu@tju.edu.cn;pgjing@tju.edu.cn

Abstract:

Aiming at the problem that the battery defect detection is susceptible to black appearance interference, which leads to the limited detect identification of the observation image under a single light source, an end-to-end deep-learning photometric stereo network (DPSNet) is proposed. Firstly, the photometric stereo feature generator (PSFG) enables model to facilitate transformation from multi-input features to normal feature so that better excel in defect signals. Then channel co-attention (CCA) module explores the channel interactions between each input and surface normal for informative representations, and fuses modify features to coordinately enhance global representation. Finally, spatial pyramid pooling (SPP) and feature pyramid networks (FPN) achieve multi-scale prediction. The experimental results on the self-built Battery101 dataset show that the proposed method achieves better effect. In addition, the ablation experiment further verifies the effectiveness of each module in the model.

Key words: signal and information processing, battery defect detection, photometric stereo, channel co-attention

CLC Number: 

  • TP391.4

Fig.1

Framework of defect detection model"

Fig.2

Examples of the Battery 101 dataset"

Table 1

Effect of different parameter values on model performance"

评估指标λ
0.010.1110100
mAP/%87.287.689.686.484.3
方差2.081.611.441.475.94

Fig.3

Diagram of detection results"

Table 2

Performance comparison on Battery 101 dataset in terms of mAP"

方法骨干网络缺陷类别mAP/%FPS/(f·s-1
耳朵气泡标签褶皱变形划痕
SSD300ResNet-5076.995.899.953.9100.0071.1173.4
YOLOv3Darknet-5389.497.699.985.1100.03.279.6193.6
LADResNet-5078.594.499.964.599.940.479.6258.3
VFNetResNet-5079.897.499.971.1100.032.680.1254.2
LDResNet-5077.5100.099.977.9100.027.780.5182.4
YOLOXDarknet-5385.6100.099.981.7100.022.881.0252.0
RetinaNetResNet-5092.2100.099.956.694.440.182.2535.7
Mask2FormerResNet-5078.2100.099.985.1100.039.683.8103.3
Faster RCNNResNet-5092.297.699.993.6100.043.487.837.0
本文Darknet-5399.2100.099.993.1100.045.689.642.6

Table 3

Ablation study for various configurations of DPSNet on Battery 101 dataset according to mAP"

PSFGCCASPPmAP
83.6
82.7
84.0
86.2
89.6
1 Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
2 Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886-893.
3 时亚涛,戴芳,杨畅民. 太阳能光伏电池缺陷检测[J]. 电子测量与仪器学报,2020,34(4):157-164.
Shi Ya-tao, Dai Fang, Yang Chang-min. Defect detection in solar photovoltaic cells[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(4): 157-164.
4 刘磊,王冲,赵树旺,等. 基于机器视觉的太阳能电池片缺陷检测技术的研究[J]. 电子测量与仪器学报,2018,32(10):47-52.
Liu Lei, Wang Chong, Zhao Shu-wang, et al. Research on machine vision-based defect detection technology for solar cells[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(10): 47-52.
5 Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥Proceedings of the European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21-37.
6 Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7263-7271.
7 Redmon J, Farhadi A. YOLOv3: an incremental improvement[DB/OL]. [2023-01-08]. .
8 Girshick R. Fast R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448.
9 Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
10 He K, Gkioxari G, Dollar P, et al. Mask R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2961-2969.
11 郝刚, 金涛. 基于多尺度数据融合的锂电池健康状态评估[J]. 江苏大学学报: 自然科学版, 2023, 44(5): 524-529.
Hao Gang, Jin Tao. Lithium battery health evaluation based on multi-scale data fusion[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44(5): 524-529.
12 桂久琪,李林升,毛晓,等. 基于改进YOLOv4的锂电池缺陷检测方法[J]. 电子测量技术,2022,45(15):144-150.
Gui Jiu-qi, Li Lin-sheng, Mao Xiao, et al. An improved YOLOv4-based defect detection method for lithium batteries[J]. Electronic Measurement Technology, 2022, 45(15): 144-150.
13 Liu L, Zhu Y, Rahman M R U, et al. Surface defect detection of solar cells based on feature pyramid network and GA-Faster-RCNN[C]∥Proceedings of the 2nd China Symposium on Cognitive Computing and Hybrid Intelligence, Xi'an, China, 2019: 292-297.
14 Silver W M. Determining shape and reflectance using multiple images[M]. Massachusetts: Massachusetts Institute of Technology, 1980.
15 Woodham R J. Photometric method for determining surface orientation from multiple images[J]. Optical Engineering, 1980, 19(1): 139-144.
16 Mukaigawa Y, Ishii Y, Shakunaga T. Analysis of photometric factors based on photometiric linearization[J]. Optical Society, 2007, 24(10): 3326-3334.
17 Wu L, Ganesh A, Shi B, et al. Robust photometric stereo via low-rank matrix completion and recovery[C]∥Proceedings of the 10th Asian Conference on Computer Vision, Queenstown, New Zealand, 2010: 703-717.
18 Ikehata S, Wipf D, Matsushita Y, et al. Robust photometric stereo using sparse regression[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 318-325.
19 Torrance K E, Sparrow E M. Theory for off-specular reflection from roughened surfaces[J]. Optical Society, 1967, 57: 1105-1114.
20 Chung H S, Jia J. Efficient photometric stereo on glossy surfaces with wide specular lobes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: No.4587771.
21 Cook R L, Torrance K E. A reflectance model for computer graphics[J]. ACM Transactions on Graphics, 1988, 1(1): 7-24.
22 Santo H, Samejima M, Sugano Y, et al. Deep photometric stereo network[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 501-509.
23 Chen G, Han K, Shi B, et al. Deep photometric stereo for non-lambertian surfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 129-142.
24 刘根,蔡念,肖盼,等. 基于光度立体和图像显著性的皮革缺陷检测[J]. 计算机工程与应用,2019,55(8):215-219.
Liu Gen, Cai Nian, Xiao Pan, et al. Leather defect detection based on photometric stereo and image saliency[J]. Computer Engineering and Applications, 2019, 55(8): 215-219.
25 Cao Y, Ding B, Chen J, et al. Photometric stereo-based defect detection system for metal parts[J]. Sensors, 2022, 22(21): No.8374.
26 He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
27 Lin T Y, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2117-2125.
28 Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context[C]∥Proceedings of the European Conference on Computer Vision(ECCV), Zurich, Switzerland, 2014: 740-755.
29 Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988.
30 Nguyen C H, Nguyen T C, Tang T N, et al. Improving object detection by label assignment distillation[C]∥Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision(WACV), Waikoloa, USA, 2022: 1005-1014.
31 Ge Z, Liu S, Wang F, et al. YOLOX: exceeding YOLO series in 2021[DB/OL]. [2023-01-15].
32 Zhang H, Wang Y, Dayoub F, et al. VarifocalNet: an IoU-aware dense object Detector[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 2021: 8510-8519.
33 Zheng Z H, Ye R G, Hou Q B, et al. Localization distillation for dense object detection[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9407-9416.
34 Cheng B, Misra I, Schwing A G, et al. Masked-attention Mask transformer for universal image segmentation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1290-1299.
[1] Hai-tao WANG,Hui-zhuo LIU,Xue-yong ZHANG,Jian WEI,Xiao-yuan GUO,Jun-zhe XIAO. Forward-looking visual field reproduction for vehicle screen-displayed closed cockpit using monocular vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1435-1442.
[2] Hui-jing DOU,Dong-xu XIE,Wei GUO,Lu-yang XING. Direction of arrival estimation based on improved orthogonal matching pursuit algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3568-3576.
[3] Chun-yang WANG,Wen-qian QIU,Xue-lian LIU,Bo XIAO,Chun-hao SHI. Accurate segmentation method of ground point cloud based on plane fitting [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 933-940.
[4] Xue-mei LI,Chun-yang WANG,Xue-lian LIU,Chun-hao SHI,Guo-rui LI. Point cloud registration method based on supervoxel bidirectional nearest neighbor distance ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1918-1925.
[5] Xue-mei LI,Chun-yang WANG,Xue-lian LIU,Da XIE. Time delay estimation of linear frequency-modulated continuous-wave lidar signals via SESTH [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 950-958.
[6] Le-ping LIN,Zeng-tong LU,Ning OUYANG. Face reconstruction and recognition in non⁃cooperative scenes [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2941-2946.
[7] Hui-jing DOU,Gang DING,Jia GAO,Xiao LIANG. Wideband signal direction of arrival estimation based on compressed sensing theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2237-2245.
[8] Xin-yu JIN,Mu-han XIE, SUN-Bin. Grain information compressed sensing based on semi-tensor product approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 379-385.
[9] Li⁃min GUO,Xin CHEN,Tao CHEN. Radar signal modulation type recognition based on AlexNet model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 1000-1008.
[10] LIN Xin-tang, LI Yan-dong, WU Pan-chao. Novel closed-form GBR solution in application of three-dimensional surface detection [J]. 吉林大学学报(工学版), 2015, 45(6): 1987-1993.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[6] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[7] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance[J]. 吉林大学学报(工学版), 2007, 37(04): 782 -785 .
[8] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[9] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[10] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .