Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 84-92.doi: 10.13229/j.cnki.jdxbgxb.20230266

Previous Articles     Next Articles

Improved active disturbance rejection control for hydraulic vibration stages based on the direct-drive valve

Cao TAN(),Hao-xin REN,Wen-qing GE(),Ya-dong SONG,Jia-yu LU   

  1. School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo 255000,China
  • Received:2023-03-25 Online:2025-01-01 Published:2025-03-28
  • Contact: Wen-qing GE E-mail:njusttancao@yeah.net;gwq@sdut.edu.cn

Abstract:

To address the problem of deterioration of the performance of the hydraulic vibration platform under parameter ingestion and the difficulty of combining the response speed and the anti-disturbance ability of the active disturbance rejection controller, an improved active disturbance rejection control method based on switching between the self-coupling PID control law and the sliding mode control law was proposed. The self-coupling PID control law based on the adaptive speed factor was designed to reduce the error quickly when the error is large. In the later stages of the response with small errors, the control law was switched according to the principle that the outputs should be equal at the switching point and thus the control output should avoid sudden changes, improving the robustness of the system resisting parameter ingestion by using the special property that the sliding mode function did not depend on the system model and avoiding the problem of overshooting caused by the large value of the adaptive velocity factor at small errors. The algorithm was proved to be stable by the direct Lyapunov method and was verified by experiment. The results show that the proposed improved active disturbance rejection control method effectively improves the response speed as well as the anti-disturbance ability of the direct-drive valve controlled hydraulic vibration platform.

Key words: vehicle engineering, hydraulic vibration stage, direct-drive valve, active disturbance rejection control, self-coupling PID, sliding mode control

CLC Number: 

  • U467.5

Fig.1

Schematic diagram of direct drive valve controlled hydraulic vibration platform"

Fig.2

Block diagram of improved active disturbance rejection control structure"

Fig.3

Testing experimental platform"

Table 1

Main parameters of system"

参数数值单位物理意义
D50mm缸径
d35mm杆径
L50mm最大行程
ρ900kg·m-3液压油密度
βe700Mpa体积模量
ksv3.02×10-4m3·(s?A)-1流量增益
ωsv200πrad·s-1阀频宽
ωh919rad·s-1液压固有频率
ξh0.031液压阻尼系数
Kce2×10-12总泄露系数
ka0.167放大系数
Cd0.61孔流量系数

Fig.4

Sinusoidal target tracking results"

Fig.5

Sinusoidal target tracking results under random interference"

Fig.6

Grade B road surface results at simulated vehicle speed of 10 m/s"

Fig.7

Grade B road surface error at simulated vehicle speed of 10 m/s"

Fig.8

Grade C road surface error at simulated vehicle speed of 10 m/s"

1 汪飞雪, 姚静, 胡福泰, 等.锻造液压机振动特性机-液联合仿真[J]. 中国机械工程, 2020, 31(10): 1175-1182, 1189.
Wang Fei-xue, Yao Jing, Hu Fu-tai, et al. Machine hydraulic joint simulation of vibration characteristics of forging hydraulic presses[J]. China Mechanical Engineering, 2020, 31 (10): 1175-1182, 1189.
2 李波, 黎德祥, 葛文庆, 等. 基于直驱阀的快速响应线控制动系统液压力精确控制[J]. 中国公路学报, 2021, 34(9): 121-132.
Li Bo, Li De-xiang, Ge Wen-qing, et al. Accurate control of hydraulic pressure in a direct drive valve based fast response line control actuator system[J]. Journal of China Highway, 2021, 34 (9): 121-132.
3 Feng H, Ma W, Yin C, et al. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller[J]. Automation in Construction, 2021, 127(Sup.C): No.103722.
4 Wrat G, Bhola M, Ranjan P, et al. Energy saving and Fuzzy-PID position control of electro-hydraulic system by leakage compensation through proportional flow control valve[J]. ISA Transactions, 2020, 101: 269-280.
5 赵岩, 周秦源, 邵念锋, 等. 基于RBF神经网络模糊PID控制的电液伺服系统 [J]. 机电工程, 2022, 39(2): 244-249.
Zhao Yan, Zhou Qin-yuan, Shao Nian-feng, et al. Electrohydraulic servo system based on RBF neural network fuzzy PID control[J]. Mechanical and Electrical Engineering, 2022,39 (2): 244-249.
6 Xu Z, Liu Q, Yao J. Adaptive prescribed performance control for hydraulic system with disturbance compensation[J]. International Journal of Adaptive Control and Signal Processing, 2021, 35(8): 1544-1561.
7 聂守成, 钱林方, 陈志群, 等. 基于干扰观测器的弹丸协调器电液伺服系统自适应滑模控制 [J]. 兵工学报, 2020, 41(9): 1745-1751.
Nie Shou-cheng, Qian Lin-fang, Chen Zhi-qun, et al. Adaptive sliding mode control for electrohydraulic servo system of projectile coordinator based on disturbance observer[J]. Journal of Military Engineering, 2020, 41(9): 1745-1751.
8 李玉昆, 李永泉, 万一心, 等.液压伺服驱动3-UPS/S并联稳定平台振动响应分析 [J]. 中国机械工程, 2019, 30(4): 423-430.
Li Yu-kun, Li Yong-quan, Wan Yi-xin, et al. Vibration response analysis of a hydraulic servo driven 3-UPS/S parallel stabilized platform[J]. China Mechanical Engineering, 2019, 30(4): 423-430.
9 Mintsa H A, Venugopal R, Kenne J P, et al. Feedback linearization-based position control of an electrohydraulic servo system with supply pressure uncertainty[J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1092-1099.
10 Du H, Ding K, Shi J, et al. High-gain observer-based pump/valve combined control for heavy vehicle electro-hydraulic servo steering system[J]. Mechatronics, 2022, 85: No.102815.
11 张震阳, 汪成文, 郭新平, 等. 基于ESO的电液位置伺服系统反步滑模控制 [J]. 北京航空航天大学学报, 2022, 48(6): 1082-1090.
Zhang Zhen-yang, Wang Cheng-wen, Guo Xin-ping, et al. ESO based backstepping sliding mode control for electro-hydraulic position servo systems [J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (6): 1082-1090.
12 李骥鹏, 孙春耕, 段志杰, 等. 电液力伺服系统的反馈线性化滑模控制研究 [J]. 机电工程, 2023, 40(6): 860-866.
Li Ji-peng, Sun Chun-geng, Duan Zhi-jie, et al. Research on feedback linearization sliding mode control for electrohydraulic servo systems[J]. Mechanical and Electrical Engineering, 2023, 40(6): 860-866.
13 Gao B, Shao J, Yang X. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system[J]. ISA Tranactions, 2014, 53(6): 1910-1918.
14 杨文明, 白建朋, 黄莹, 等. 基于BP改进PID的掘进机闭环回路跟随误差联合仿真[J]. 中国工程机械学报, 2022, 20(6): 493-497.
Yang Wen-ming, Bai Jian-peng, Huang Ying, et al. Joint simulation of tracking error in closed loop of roadheader based on BP improved PID[J]. Journal of China Construction Machinery, 2022, 20(6): 493-497.
15 王立新, 赵丁选, 刘福才, 等. 基于死区补偿的电液位置伺服系统自抗扰控制[J]. 中国机械工程, 2021, 32(12): 1432-1442.
Wang Li-xin, Zhao Ding-xuan, Liu Fu-cai, et al. Auto-disturbance rejection control for electro-hydraulic position servo systems based on dead zone compensation[J]. China Mechanical Engineering, 2021, 32 (12): 1432-1442.
16 王立新, 赵丁选, 刘福才, 等. 一类轻载电液位置伺服系统线性自抗扰控制[J]. 控制理论与应用, 2021, 38(4): 503-515.
Wang Li-xin, Zhao Ding-xuan, Liu Fu-cai, et al. Linear active disturbance rejection control for a class of lightly loaded electrohydraulic position servo systems[J]. Control Theory and Application, 2021, 38(4): 503-515.
17 司国雷, 神英淇, 王嘉磊, 等. 电液位置伺服系统自抗扰控制研究 [J]. 液压与气动, 2020(12): 14-21.
Si Guo-lei, Shen Ying-qi, Wang Jia-lei, et al. Research on active disturbance rejection control for electrohydraulic position servo system[J]. Hydraulic and Pneumatic, 2020(12): 14-21.
18 付永领, 陈辉, 刘和松, 等. 基于自抗扰控制的导弹电液舵机系统研究 [J]. 宇航学报, 2010, 31(4): 1051-1055.
Fu Yong-ling, Chen Hui, Liu He-song, et al. Research on missile electrohydraulic actuator system based on active disturbance rejection control [J]. Journal of Astronautics, 2010, 31(4): 1051-1055.
19 范新宇, 王鹏, 殷杰, 等. 新型复合式电磁直线执行器的多模式协调控制[J]. 中国机械工程, 2023, 34(3): 292-299.
Fan Xin-yu, Wang Peng, Yin Jie, et al. Multimode coordinated control of a new composite electromagnetic linear actuator[J]. China Mechanical Engineering, 2023,34 (3): 292-299.
20 谭草, 黎德祥, 葛文庆, 等. 改进LuGre模型的电磁直线执行器自适应鲁棒控制[J]. 电机与控制学报, 2022, 26(10): 130-138.
Tan Cao, Li De-xiang, Ge Wen-qing, et al. Adaptive robust control for electromagnetic linear actuator with improved LuGre model[J]. Electric Machines and Control, 2022, 26 (10): 130-138.
21 Lu Y, Tan C, Ge W, et al. Adaptive disturbance observer-based improved super-twisting sliding mode control for electromagnetic direct-drive pump[J]. Smart Materials and Stuctures,2022, 32(1): No. 017001.
22 谭草, 鲁应涛, 葛文庆, 等. 直驱式永磁直线电机深度模糊滑模-自抗扰控制[J]. 西安交通大学学报, 2023, 57(1): 185-194.
Tan Cao, Lu Ying-tao, Ge Wen-qing, et al. Deep fuzzy sliding mode active disturbance rejection control for direct drive permanent magnet linear motors[J]. Journal of Xi'an Jiaotong University, 2023,57(1): 185-194.
23 Chen G, Jiang Y, Tang Y, et al. Revised adaptive active disturbance rejection sliding mode control strategy for vertical stability of active hydro-pneumatic suspension[J]. ISA Transactions, 2023, 132: 490-507.
24 曾喆昭, 陈泽宇.论PID与自耦PID控制理论方法 [J]. 控制理论与应用, 2020, 37(12): 2654-2662.
Zeng Zhe-zhao, Chen Ze-yu. On PID and self coupling PID control theory and method[J]. Control Theory and Application, 2020, 37(12): 2654-2662.
25 杨旭, 曹立佳, 刘洋. 基于自耦PID控制的四旋翼无人机姿态控制 [J]. 兵器装备工程学报, 2021, 42(10): 170-175.
Yang Xu, Cao Li-jia, Liu Yang. Attitude control of a four rotor unmanned aerial vehicle based on self coupled PID control[J]. Journal of Weapon Equipment Engineering, 2021, 42 (10): 170-175.
26 郭新平, 汪成文, 刘华, 等. 基于扩张状态观测器的泵控电液伺服系统滑模控制 [J]. 北京航空航天大学学报, 2020, 46(6): 1159-1168.
Guo Xin-ping, Wang Cheng-wen, Liu Hua, et al. Sliding mode control for pump controlled electrohydraulic servo systems based on extended state observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1159-1168.
[1] Jun-nian WANG,Yu-jing CAO,Zhi-ren LUO,Kai-xuan LI,Wen-bo ZHAO,Ying-yi MENG. Online detection algorithm of road water depth based on binocular vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 175-184.
[2] Shou-tao LI,Lu YANG,Ru-yi QU,Peng-peng SUN,Ding-li YU. Slip rate control method based on model predictive control [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2687-2696.
[3] Liang WU,Yi-fan GU,Biao XING,Fang-wu MA,Li-wei NI,Wei-wei JIA. Steering four-wheel distributed integrated control method based on LQR [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2414-2422.
[4] Yu-hai WANG,Xiao-zhi LI,Xing-kun LI. Predictive energy saving algorithm for hybrid electric truck under high-speed condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2121-2129.
[5] Sheng CHANG,Hong-fei LIU,Nai-wei ZOU. H loop shaping robust control of vehicle tracking on variable curvature curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2141-2148.
[6] Jian-ze LIU,Jiang LIU,Min LI,Xin-jie ZHANG. Vehicle speed decoupling road identification method based on least squares [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1821-1830.
[7] Xian-yi XIE,Ming-jun ZHANG,Li-sheng JIN,Bin ZHOU,Tao HU,Yu-fei BAI. Artificial bee colony trajectory planning algorithm for intelligent vehicles considering comfortable [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1570-1581.
[8] Ling HUANG,Zuan CUI,Feng YOU,Pei-xin HONG,Hao-chuan ZHONG,Yi-xuan ZENG. Vehicle trajectory prediction model for multi-vehicle interaction scenario [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1188-1195.
[9] Hong-yan GUO,Lian-bing WANG,Xu ZHAO,Qi-kun DAI. Joint estimation of vehicle mass and road slope considering lateral motion [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1175-1187.
[10] Yu-kai LU,Shuai-ke YUAN,Shu-sheng XIONG,Shao-peng ZHU,Ning ZHANG. High precision detection system for automotive paint defects [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1205-1213.
[11] Shao-hua WANG,Qi-rui ZHANG,De-hua SHI,Chun-fang YIN,Chun LI. Analysis of nonlinear vibration response characteristics of hybrid transmission system with dual-planetary gear sets [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 890-901.
[12] Xue-jing DU,Ning WANG,Jie ZHANG,Yu-long PEI. Control strategy of lateral stability of semi-trailer train in dangerous section of cold area [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 996-1006.
[13] Zhen-hai GAO,Rong-gui CAI,Tian-jun SUN,Tong YU,Hao-yuan ZHAO,Hao BAN. Data⁃filtering method for driving behavior based on vehicle shared autonomy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 589-599.
[14] Xian-yi XIE,Yu-han WANG,Li-sheng JIN,Xin ZHAO,Bai-cang GUO,Ya-ping LIAO,Bin ZHOU,Ke-qiang LI. Intelligent vehicle trajectory tracking control based on adjusting step size of control horizon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 620-630.
[15] Xiao-lin DENG,Fu-mo YANG,Shan-gan QIN. Comparative analysis on crashworthiness of a novel bamboo⁃like hexagonal gradient hierarchical multicellular tube [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 333-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!