Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 175-184.doi: 10.13229/j.cnki.jdxbgxb.20230325

Previous Articles    

Online detection algorithm of road water depth based on binocular vision

Jun-nian WANG1(),Yu-jing CAO1,Zhi-ren LUO1,Kai-xuan LI1,Wen-bo ZHAO1,Ying-yi MENG2   

  1. 1.National Key Laboratory of Automotive Chassis Integration and Bionics,Jilin University,Changchun 130022,China
    2.Key Lab of Groundwater Resources and Environment Ministry of Education,Jilin University,Changchun 130012,China
  • Received:2023-04-08 Online:2025-01-01 Published:2025-03-28

Abstract:

Wading driving poses risks to the life and property safety of drivers and passengers. To improve the safety of wading driving, a technical solution combining binocular vision and laser projection was adopted. Based on the imaging law of underwater virtual images, a binocular vision algorithm for calculating the depth of water ahead was proposed, which only requires data collected by the vehicle's sensors. To verify the effectiveness of the algorithm, experimental verification is conducted. The results showed that under ideal conditions, the relative error of the algorithm's calculation results was within 3%. In practical scenarios, the methods of averaging and filtering can reduce the impact of water surface fluctuations, and the maximum relative error introduced by turbid water is about 7%. This proves that the algorithm proposed has good accuracy and robustness and can provide drivers with water depth information ahead to assist drivers in judging road conditions.

Key words: vehicle engineering, water depth detection, binocular vision, driving aids, coordinate transformation, laser image spot

CLC Number: 

  • U471.15

Fig.1

Diagram of virtual image imaging in water"

Fig.2

Imaging principle of virtual image in water in binocular camera"

Fig.3

Photographic light path diagram of virtual image in water"

Fig.4

Point position relationship diagram when looking down at water surface"

Fig.5

Imaging principle of binocular camera"

Fig.6

Photographic light path diagram for binocular camera"

Fig.7

Parameter calibration experimental platform"

Table 1

Parameter calibration experimental data"

参数实验序号
12345678910平均值
zP /mm500500550550600600650650700700
B/mm1001201001201008010090100110
nxl/像素20333115527314638149100131176
nxr/像素-445-445-434-434-392-392-349-349-332-332
nf /像素3 2403 2333 2403 2403 2283 2253 2373 2433 2413 2333 236

Fig.8

Correctness verification experimental platform"

Fig.9

Correctness verification experimental results"

Table 2

Correctness verification experimental data"

参数实验序号
123456789101112131415
bO /mm223223223191191190156156161119119121929295
α/弧度0.60.60.60.60.60.660.660.660.480.480.480.420.420.420.3
B/mm1001401201009010010080100100150100100150100
nxl/像素5789667724944074544773014324459104465401020579
nyl/像素-1 009-1 004-1 007-490-490-281-169-171-845-694-674-921-783-753-1 278
nxr/像素-386-386-386-362-362-401-397-397-466-475-475-486-404-404-400
nyr/像素-1 006-1 006-1 006-482-482-280-162-162-849-697-697-926-786-786-1 272
H/mm828282115115115150150150192192192222222222
h1/mm808080115116112146147147189189189219217222
误差/mm-2-2-201-3-4-3-3-3-3-3-3-50

相对误

差/%

-2.4-2.4-2.40.00.9-2.6-2.7-2.0-2.0-1.6-1.6-1.6-1.4-2.30.0
h2/mm535252707068868789110108111124119127
误差/mm-29-30-30-45-45-47-64-63-61-82-84-81-98-103-95

相对误

差/%

-35-37-37-39-39-41-43-42-41-43-44-42-44-46-43

Table 3

Water surface fluctuation experimental eata"

参数实验序号
12345678910后9组平均值
nxl/像素269271274265264260271272268263
nyl/像素-956-953-957-961-957-960-957-956-955-966
nxr/像素-627-633-629-626-629-629-623-625-634-626
nyr/像素-941-951-939-944-942-948-961-945-957-939
h0/mm136136136136136136136136136136
h/mm136131133139137139135135132141135.78
误差/mm0-5-3313-1-1-45-0.22
相对误差/%0.0-3.7-2.22.20.72.2-0.7-0.7-2.93.7-0.2

Fig.10

Water surface fluctuation experimental results"

Fig.11

Water quality adaptability experimental platform"

Table 4

Water quality adaptability experimental data"

参数实验序号
12345678
浊度/NTU0.75.96.89.815.016.817.719.3
nxl/像素253253253254253252253253
nyl/像素-10-6-8469711
nxr/像素-29-29-30-29-29-31-31-30
nyr/像素-8-3-668111014
h0/mm108108108108108108108108
h/mm108107107103104102101101
误差/mm0-1-1-5-4-6-7-7
相对误差/%0.0-0.9-0.9-4.6-3.7-5.6-6.5-6.5

Fig.12

Water quality adaptability experimental results"

1 Yamaguchi K. Trends in extreme weather events induced by global climate change[J]. Electrical Engineering in Japan, 2021, 214(2): No.23306.
2 任宏昌, 张恒德. 郑州“7·20”暴雨的精细化特征及主要成因分析[J]. 河海大学学报:自然科学版, 2022, 50(5): 1-9.
Ren Hong-chang, Zhang Heng-de. Refined features and main causes of "7·20" rainstorm in Zhengzhou[J]. Journal of Hohai University (Natural Sciences), 2022, 50(5): 1-9.
3 Zheng X, Su D H. Analysis and research on vehicle wading performance[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(1): 3-15.
4 Khapane P, Chavan V, Ganeshwade U. Water ingress analysis and splash protection evaluation for vehicle wading using non-classical CFD simulation[J]. SAE International Journal of Passenger Cars - Mechanical Systems, 2017, 10(1): 183-194.
5 黄晓明, 曹青青, 刘修宇, 等. 基于路表分形摩擦理论的整车雨天制动性能模拟[J]. 吉林大学学报:工学版, 2019, 49(3): 757-765.
Huang Xiao-ming, Cao Qing-qing, Liu Xiu-yu, et al. Simulation of vehicle braking performance on rainy days based on pavement surface fractal friction theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 757-765.
6 Spitzhüttl F, Goizet F, Unger T, et al. The real impact of full hydroplaning on driving safety[J]. Accident Analysis & Prevention, 2020, 138:No. 105458.
7 Varshney M, Ballani A, Pasunurthi S, et al. Transient, 3D CFD, moving mesh simulation of vehicle water wading in a water tunnel with inclined entry-exit[C]∥WCX SAE World Congress Experience, Online,2022: 2022-01-0768.
8 Varshney M, Pasunurthi S S, Maiti D, et al. CFD method development for simulating water fording for a passenger car[C]∥SAE WCX Digital Summit, Online,2021: 2021-01-0205.
9 Zhu H, Song R. Underwater image enhancement for automotive wading[C]∥The 13th International Conference on Computer and Automation Engineering (ICCAE), Melbourne, Australia, 2021: 5-9.
10 Bystrov A, Hoare E, Gashinova M, et al. Underwater optical imaging for automotive wading[J]. Sensors, 2018, 18(12):No. 4476.
11 J·夏普. 用于确定和显示涉水状况的方法和系统及具有该系统的车辆[P]. 中国: CN201910700255.1, 2020-02-28.
12 朱文强, 曹怡然. 用于车辆的涉水状态显示方法[P]. 中国: CN201910099467.9, 2022-03-29.
13 栾清华, 秦志宇, 王东, 等. 城市暴雨道路积水监测技术及其应用进展[J]. 水资源保护, 2022, 38(1): 106-116, 140.
Luan Qing-hua, Qin Zhi-yu, Wang Dong, et al. Review on monitoring technology of urban road waterlogging after rainstorm and its application[J]. Water Resources Protection, 2022, 38(1): 106-116, 140.
14 李纪玄, 李琦, 安胜伟. 车辆涉水探测方法、系统及车辆[P]. 中国: CN201710400538.5, 2021-06-11.
15 罗金亮, 廖国红, 李明. 路面水深检测方法、装置及车辆[P]. 中国: CN201610958066.0, 2021-08-10.
16 高鲁涛. 一种积水深度确定方法及装置[P]. 中国: CN202180000406.8, 2021-07-23.
17 唐帅. 用于车辆的水深检测系统和方法[P]. 中国: CN201710169691.1, 2021-01-08.
18 王军年, 曹宇靖, 赵文伯, 等. 一种道路积水车载在线监测与驾驶辅助系统及方法[P]. 中国: CN202110281787.3, 2022-09-02.
19 夏清华, 屈少华. 水中物体的视深度[J]. 物理通报, 1999(1): 13-14.
Xia Qing-hua, Qu Shao-hua. Apparent depth of objects in water[J]. Physics Bulletin, 1999(1): 13-14.
20 耿英楠. 立体匹配技术的研究[D]. 长春: 吉林大学通信工程学院, 2014.
Geng Ying-nan. Research on stereo matching algorithms[D]. Changchun: College of Communication Engineering, Jilin University, 2014.
[1] Shou-tao LI,Lu YANG,Ru-yi QU,Peng-peng SUN,Ding-li YU. Slip rate control method based on model predictive control [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2687-2696.
[2] Liang WU,Yi-fan GU,Biao XING,Fang-wu MA,Li-wei NI,Wei-wei JIA. Steering four-wheel distributed integrated control method based on LQR [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2414-2422.
[3] Yu-hai WANG,Xiao-zhi LI,Xing-kun LI. Predictive energy saving algorithm for hybrid electric truck under high-speed condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2121-2129.
[4] Sheng CHANG,Hong-fei LIU,Nai-wei ZOU. H loop shaping robust control of vehicle tracking on variable curvature curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2141-2148.
[5] Jian-ze LIU,Jiang LIU,Min LI,Xin-jie ZHANG. Vehicle speed decoupling road identification method based on least squares [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1821-1830.
[6] Xian-yi XIE,Ming-jun ZHANG,Li-sheng JIN,Bin ZHOU,Tao HU,Yu-fei BAI. Artificial bee colony trajectory planning algorithm for intelligent vehicles considering comfortable [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1570-1581.
[7] Zi-chao ZHANG,Jian CHEN. A mapping method using 3D orchard point cloud based on hawk-eye-inspired stereo vision and super resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1469-1481.
[8] Ling HUANG,Zuan CUI,Feng YOU,Pei-xin HONG,Hao-chuan ZHONG,Yi-xuan ZENG. Vehicle trajectory prediction model for multi-vehicle interaction scenario [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1188-1195.
[9] Hong-yan GUO,Lian-bing WANG,Xu ZHAO,Qi-kun DAI. Joint estimation of vehicle mass and road slope considering lateral motion [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1175-1187.
[10] Yu-kai LU,Shuai-ke YUAN,Shu-sheng XIONG,Shao-peng ZHU,Ning ZHANG. High precision detection system for automotive paint defects [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1205-1213.
[11] Shao-hua WANG,Qi-rui ZHANG,De-hua SHI,Chun-fang YIN,Chun LI. Analysis of nonlinear vibration response characteristics of hybrid transmission system with dual-planetary gear sets [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 890-901.
[12] Xue-jing DU,Ning WANG,Jie ZHANG,Yu-long PEI. Control strategy of lateral stability of semi-trailer train in dangerous section of cold area [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 996-1006.
[13] Zhen-hai GAO,Rong-gui CAI,Tian-jun SUN,Tong YU,Hao-yuan ZHAO,Hao BAN. Data⁃filtering method for driving behavior based on vehicle shared autonomy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 589-599.
[14] Xian-yi XIE,Yu-han WANG,Li-sheng JIN,Xin ZHAO,Bai-cang GUO,Ya-ping LIAO,Bin ZHOU,Ke-qiang LI. Intelligent vehicle trajectory tracking control based on adjusting step size of control horizon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 620-630.
[15] Xiao-lin DENG,Fu-mo YANG,Shan-gan QIN. Comparative analysis on crashworthiness of a novel bamboo⁃like hexagonal gradient hierarchical multicellular tube [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 333-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!