Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (1): 141-149.doi: 10.13229/j.cnki.jdxbgxb.20230337

Previous Articles     Next Articles

Exploring relationship between urban built environment and road traffic performance

Guang-yue NIAN1(),Hai-xiao PAN1(),Jian SUN2   

  1. 1.College of Architecture and Urban Planning,Tongji University,Shanghai 200092,China
    2.School of Future Transportation,Chang'an University,Xi'an 710021,China
  • Received:2023-04-10 Online:2025-01-01 Published:2025-03-29
  • Contact: Hai-xiao PAN E-mail:ngyown@tongji.edu.cn;hxpank@online.sh.cn

Abstract:

This study provides a quantitative analysis of the relationship between the built environment and road traffic performance. We define traffic performance by measuring average travel speeds on road segments and develop a random forest model using multi-source panel data to predict speeds based on built environment variables. The results demonstrate high predictive accuracy, revealing a significant correlation between road traffic performance and the built environment, characterized by complex non-linear relationships. Our work addresses three limitations in prior research: overlooking dynamic traffic performance characteristics; potential chance bias in small-area studies; and insufficient exploration of non-linear relationships. These findings provide actionable insights for urban planners and policymakers to optimize transport infrastructure and management strategies.

Key words: urban traffic, correlation mechanism, random forest, built environment, travel speed, non-linear relationship

CLC Number: 

  • U121

Fig.1

Spatial distribution of the selected study road segments"

Table 1

Descriptive statistics of indicators of road segments"

变量名称符号最小值中值平均值最大值标准差
路段长度l250.288602.351665.7392 202.920300.180
POI混合度m00.8640.78510.255
是否有地铁站s000.16710.373
车辆服务密度d100.0210.0614.7440.164
住宅小区密度d200.0470.0920.6670.111
医疗卫生服务密度d300.0340.1271.8020.213
停车场出入口密度d4000.0580.9550.114
公交站密度d500.0330.0400.2300.035
科技文化服务密度d600.0360.1142.6950.205
生活服务密度d700.0840.2999.0170.593
体育休闲服务密度d800.0270.1093.7730.220
政府机构密度d900.0390.1271.9630.224
购物服务密度d1000.1220.63022.8731.434
餐饮服务密度d1100.0650.2857.5120.566
公司企业密度d1200.0520.1173.0790.213
金融保险密度d13000.0601.3080.126
住宿服务密度d14000.0763.2820.215
商住楼密度d15000.0210.5320.057
景点密度d16000.0190.8630.052

Fig.2

Matrix of correlation coefficients between 16 built environment density variables"

Table 2

Factor loading values and their representative variables"

建成环境

密度变量

符号因子变量
f1f2f3f4f5
车辆服务密度d10.1950.7460.1950.2700.040
住宅小区密度d20.2440.3410.794-0.0210.110
医疗卫生服务密度d30.8610.2990.2060.2080.064
停车场出入口密度d40.6670.2260.4870.1530.087
公交站密度d50.7460.3020.3680.1970.037
科技文化服务密度d60.5400.5440.3020.1890.024
生活服务密度d70.7090.1300.3560.3930.036
体育休闲服务密度d80.8870.3230.1850.0440.071
政府机构密度d90.6450.6430.1160.0080.061
购物服务密度d100.5340.0670.6210.317-0.003
餐饮服务密度d110.1010.1030.077-0.0160.984
公司企业密度d120.4680.7250.190-0.0640.162
金融保险密度d130.7860.3810.1110.0620.063
住宿服务密度d140.8420.2500.1860.1220.042
商住楼密度d150.8640.2100.2270.0490.106
景点密度d160.1640.1350.0720.927-0.021

Fig.3

Random forest prediction model performance assessment, variable importance ranking and significance"

Table 3

Results of the multivariable linear regression model"

变 量Estimate

Std.

Error

t valuePr(>|t|)
模型评价R20.011p-value3.6×10-9
截距23.9580.94325.409<2.0×10-16***
是否有地铁站s-4.1570.655-6.3472.4×10-10***
POI混合度m1.3600.9601.4160.157
路段长度l0.0030.0013.8190.000 1***
因子f10.2210.2370.9340.350
因子f20.2130.2410.8840.377
因子f30.2410.2420.9980.318
因子f40.1570.2530.6220.534
因子f50.0330.3390.0970.923

Fig.4

Partial dependence plot of predictor variables"

1 住房和城乡建设部城市交通基础设施监测与治理实验室. 2022年度中国主要城市道路网密度与运行状态监测报告[R]. 北京:住房和城乡建设部, 2022.
2 陆化普. 城市交通拥堵机理分析与对策体系[J]. 综合运输, 2014, 392(3): 10-19.
Lu Hua-pu. Analysis of urban traffic congestion mechanism and countermeasure system[J]. China Transportation Review, 2014, 392(3): 10-19.
3 袁浩, 任杰, 杨睿, 等. 考虑空间异质性的城市建成环境对交通拥堵状态的影响[J]. 武汉理工大学学报:交通科学与工程版, 2021, 45(5): 840-845.
Yuan Hao, Ren Jie, Yang Rui, et al. Influence of urban building environment on traffic congestion considering spatial heterogeneity[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2021, 45(5): 840-845.
4 李佳敏, 张彪, 郭亮. 大城市交通与建成环境综合规划的范式扩展与深化——中美案例的比较与启示[J]. 西部人居环境学刊, 2021, 36(4): 36-44.
Li Jia-min, Zhang Biao, Guo Liang. The paradigm expansion and deepening of the comprehensive planning of transportation & built environment in metropolis: comparison and enlightenment of the Sino-American case[J]. Journal of Human Settlements in West China, 2021, 36(4): 36-44.
5 Wang M, Debbage N. Urban morphology and traffic congestion: longitudinal evidence from US cities[J]. Computers, Environment and Urban Systems, 2021, 89: No.101676.
6 Handy S L, Boarnet M G, Ewing R, et al. How the built environment affects physical activity: views from urban planning[J]. American Journal of Preventive Medicine, 2002, 23(Sup.2): 64-73.
7 韩会然, 杨成凤. 建成环境对出行行为的影响研究进展与展望[J]. 安徽师范大学学报:自然科学版, 2019, 42(2): 166-173.
Han Hui-ran, Yang Cheng-feng. Progress and prospects of the research on built environment and residents´travel behavior[J]. Journal of Anhui Normal University(Natural Science), 2019, 42(2): 166-173.
8 Ewing R, Cervero R. Travel and the built environment—a meta-analysis[J]. Journal of the American Planning Association, 2010, 76(3): 265-294.
9 Handy S, Cao X, Mokhtarian P. Correlation or causality between the built environment and travel behavior? Evidence from northern California[J]. Transportation Research Part D: Transport and Environment, 2005, 10(6): 427-444.
10 Cao J. Heterogeneous effects of neighborhood type on commute mode choice: an exploration of residential dissonance in the twin cities[J]. Journal of Transport Geography, 2015, 48(C): 188-196.
11 Zhang Q, Clifton K J, Moeckel R, et al. Household trip generation and the built environment: does more density mean more trips?[J]. Transportation Research Record, 2019, 2673(5): 596-606.
12 尹超英, 邵春福, 黄兆国, 等. 基于梯度提升决策树的多尺度建成环境对小汽车拥有的影响[J]. 吉林大学学报:工学版, 2022, 52(3): 572-577.
Yin Chao-ying, Shao Chun-fu, Huang Zhao-guo, et al. Investigating influences of multi⁃scale built environment on car ownership behavior based on gradient boosting decision trees[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 572-577.
13 颜冉, 杨新刚, 杨婷. 城市建成环境对道路服务水平的影响研究[J]. 安徽建筑大学学报, 2020, 28(5): 70-75.
Yan Ran, Yang Xin-gang, Yang Ting. Research on road service level influenced by urban built environment[J]. Journal of Anhui Jianzhu University, 2020, 28(5): 70-75.
14 钟绍鹏, 何璟, 朱康丽, 等. 基于建成环境和低频浮动车数据的路段行程时间估计[J]. 交通运输系统工程与信息, 2021, 21(4): 125-131,147.
Zhong Shao-peng, He Jing, Zhu Kang-li, et al. Travel time estimation based on built environment and low frequency floating car data[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 125-131,147.
15 Pan Y, Chen S, Niu S, et al. Investigating the impacts of built environment on traffic states incorporating spatial heterogeneity[J]. Journal of Transport Geography, 2020, 83: No.102663.
16 Zhang K S, Sun D, Shen S W, et al. Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data[J]. Journal of Transport and Land Use, 2017, 10(1): 675-694.
17 Zhong S, Wang Z, Wang Q, et al. Exploring the spatially heterogeneous effects of urban built environment on road travel time variability[J]. Journal of Transportation Engineering, Part A: Systems, 2021, 147(1): No.4020142.
18 王东炜, 李辉, 李岩, 等. 城市道路网络路段状态相关性与道路间距分析[J]. 交通运输工程学报, 2017, 17(1): 101-108.
Wang Dong-wei, Li Hui, Li Yan, et al. Analysis of road section state correlation and road distance in urban road network[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 101-108.
19 Cervero R. Mixed land-uses and commuting: evidence from the American housing survey[J]. Transportation Research Part A: Policy and Practice, 1996, 30(5): 361-377.
20 Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[1] Chun-jiao DONG,Yu-xiao LU,She-qiang MA,Peng-hui LI. Identification of Ebike violation behaviors by considering waiting tolerance time [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2540-2546.
[2] Xiao-yue WEN,Guo-min QIAN,Hua-hua KONG,Yue-jie MIU,Dian-hai WANG. TrafficPro: a framework to predict link speeds on signalized urban traffic network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2214-2222.
[3] Shu-hong MA,Guo-mei LIAO,Yan HUANG,Jun-jie ZHANG. Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1913-1922.
[4] Zhi-hua XIONG,Dai-yue DONG,Chun-jiao DONG,Yan ZHENG,Chao XIE. Combined decision-choice behavior of spectators considering personal preferences [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 979-986.
[5] Jiao-rong WU,Qing-kai LIN,Yong-qi DENG. Identification method of potential public transportation lane demand based on bus line operation stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 692-699.
[6] Wen-hui ZHANG,Jing YI. Optimization of bus stop system considering capacity and queuing delays [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 146-154.
[7] Shi-jun SONG,Min FAN. Design of big data anomaly detection model based on random forest algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2659-2665.
[8] Chao-ying YIN,Ying LU,Chun-fu SHAO,Jian-xiao MA,De-jie XU. Impacts of built environment on commuting mode choice considering spatial autocorrelation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1994-2000.
[9] Ya-rang YANG,Yun-hu WU. Blockage fault detection of wireless sensor communication network based on random forest [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1490-1495.
[10] Bin WANG,Bing-hui HE,Na LIN,Wei WANG,Tian-yang LI. Tea plantation remote sensing extraction based on random forest feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1719-1732.
[11] Xian-yan KUANG,Zi-ru CHEN. Dynamic game comity behavior at pedestrians′ crossing on unsignal-controlled roads based on cellular automata [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 837-846.
[12] Hong-fei JIA,Zi-han SHAO,Li-li YANG. Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 564-571.
[13] Chao-ying YIN,Chun-fu SHAO,Zhao-guo HUANG,Xiao-quan WANG,Sheng-you WANG. Investigating influences of multi⁃scale built environment on car ownership behavior based on gradient boosting decision trees [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 572-577.
[14] Chun-jiao DONG,Dai-yue DONG,Cheng-xiang ZHU-GE,Li ZHEN. Trip characteristics and decision⁃making behaviors modeling of electric bicycles riding [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2618-2625.
[15] Jing-xian WU,Hua-peng SHEN,Yin HAN,Min YANG. Residents' commuting time model under the nonlinear impact of urban built environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2568-2573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!